{
"cells": [
{
"cell_type": "markdown",
"id": "ce94202c",
"metadata": {},
"source": [
"## UV/Vis optical absorption spectrum of semiconductors\n",
"\n",
"Author: S. Tiwari (v1, 06/01/2024)
\n",
"Revision: F. Giustino (v1.1, 07/02/2024)
\n",
"\n",
"In this Noteboook, we compute the optical absorption spectrum of silicon using \n",
"1. The standard theory of indirect phonon-assisted absorption;\n",
"2. The quasi-degenerate perturbation theory (QDPT) method, which described both direct and indirect processes on the same footing. \n",
"\n",
"Electrons and phonons are computed with Quantum ESPRESSO (QE), maximally-localized Wannier functions are computed with Wannier90, and the optical spectra are computed with EPW. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7a37f836",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import rc\n",
"import time, sys, os\n",
"import EPWpy\n",
"from EPWpy import EPWpy\n",
"from EPWpy.plotting import plot_bands\n",
"from EPWpy.QE.PW_util import *"
]
},
{
"cell_type": "markdown",
"id": "1e4570aa",
"metadata": {},
"source": [
"Below we define constants that will remail unchanged throughout the Notebook. The object `silicon` is created as an instance of the `EPWpy` class. This object will contain everything that we need to execute and analyze the calculations."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e21cca46",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" \n",
" \n",
" -*#*- ...............- \n",
" .+*= .+%*-=%%: .=#*- -===============-:.\n",
" :*%=*%%- *%* #%* :+%+-%%+ .:. -=. :==-. \n",
" -%S -%%*: :#%. -%%-. -##: #%* -=. :==- \n",
" .. .%S: +%%%%*. :*%%%#= %%= -=. :==- \n",
" :=#%%*- .#S- .. .%%= :*#*: -=. :==- \n",
" -%S:.=#%%*==%# *%%=::=##-+%%. . .=-. :==- .= \n",
" :%%- .-+++: -+##*=. =%S :-::==: .==- --.\n",
" *%# #%+ -=--:. .----:. \n",
" :%%- -%S. \n",
" .-=*####SS%#########: -###########*+: +#######= =%SS####+::. \n",
" =+#**%SSSSSSSSSSSSSSSS= =SSSSSSSSSSSSSSS= #SSSSSSS*. +SSSSSSSS%%%%- \n",
" *%% =SSS.. .SSS= SSS=. .:+SSS+ -SSS:. .-::. .SSS+. #%* \n",
" #%#. =SSS. *S# *S%: SSS= %SS%. .SSS= #SSS%. :SSS: =%#. \n",
" *%%: =SSS#*#SSS- SSS= .+SSS+. %SS*.=SSSSS+ +SS%.:+%+ \n",
" +%%:=SSSSSSSSS- SSSSSSSSSSSSS=. +SSS:SSS%SSS:%SS*-#%= \n",
" ....#S==SSS:..SSS: =+- SSS%######+=. -SSS%SS%.#SS%SSS==%%=. \n",
" .:+##%%#*- =SSS. ::. :SSS. SSS=. SSSSSS:..SSSSSS: :*%%%*=- \n",
" #%+. -+#SSS*+++++++*SSS: .=+SSS#++++: %SSSS+. =SSSS%. :-+#%%+ \n",
" #%* .SSSSSSSSSSSSSSSSSS: *SSSSSSSSSSS. +SSS%. %SSS*. . .%%= \n",
" =%S :::::::::::::::::. .:::::::::. :::. :::. =+=-.#%+ \n",
" -%S: =+===#S: \n",
" ==*------------------------------=========+++++++++++++++++++++++========++-+## \n",
" =+++++++++++*******++++++++++++++++========------------------==========+++++++- \n",
"-- -- -- -- -- -- -- -- -- -- -- -- Structure Info -- -- -- -- -- -- -- -- -- -- -- -- -- \n",
"1\n",
"https://raw.githubusercontent.com/PseudoDojo/ONCVPSP-PBE-FR-PDv0.4/master/Si/Si.upf\n",
"https://raw.githubusercontent.com/PseudoDojo/ONCVPSP-PBE-FR-PDv0.4/master/Si/Si_r.upf\n",
"pseudo found at pseudodojo : ONCVPSP-PBE-FR-PDv0.4/Si_r.upf\n",
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- \n",
"Pseudopotential: Si_r.upf\n",
"Pseudopotential directory: '/mnt/storage/sabya/For_video/epwpy/notebooks_basic/pseudo/'\n",
"Prefix: si\n"
]
}
],
"source": [
"\n",
"silicon=EPWpy.EPWpy({'prefix':'si',\n",
" 'calculation':'\\'scf\\'',\n",
" 'ibrav':2,\n",
" 'nat':2,\n",
" 'ntyp':1,\n",
" 'atomic_species':['Si'],\n",
" 'mass':[28.0855],\n",
" 'atoms':['Si','Si'],\n",
" 'ecutwfc':'40', \n",
" 'celldm(1)':'10.262', \n",
" 'pseudo_auto':True\n",
" },\n",
" env='mpirun')\n",
"\n",
"pseudopot=silicon.__dict__['pw_atomic_species']['pseudo'][0]\n",
"print('Pseudopotential:', silicon.__dict__['pw_atomic_species']['pseudo'][0])\n",
"print('Pseudopotential directory:', silicon.__dict__['pw_control']['pseudo_dir'])\n",
"print('Prefix:',silicon.__dict__['prefix'])"
]
},
{
"cell_type": "markdown",
"id": "f3f9726b",
"metadata": {},
"source": [
"### Self-consistent field (SCF) calculations\n",
"\n",
"Here we perform the self-consistent field calculation to obtain the electron charge density of silicon in the ground state. The calculation consists of three separate steps:\n",
"1. Apply the method `scf` to the object `silicon`. This step specifies runtime parameters for an SCF calculation on siicon \n",
"2. Based on the properties defined at step 1 as well as other properties that are set by default within EPWpy, the method `prepare` creates the input file needed by QE\n",
"3. The method `run` applied to the object `silicon` instructs QE to perform the SCF calculation"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "140bb671",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-- -- -- -- -- -- -- -- -- -- -- Calculation: scf -- -- -- -- -- -- -- -- -- -- -- \n",
"Running scf |████████████████████████████████████████| in 2.4s (0.87/s) \n",
"\n",
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- \n"
]
}
],
"source": [
"silicon.scf(name='scf',kpoints={'kpoints':[[6,6,6]]}) \n",
"silicon.prepare(type_run='scf') \n",
"silicon.run(4)\n",
"silicon.pw_util = silicon.PW_utilities()"
]
},
{
"cell_type": "markdown",
"id": "a4d73ec1",
"metadata": {},
"source": [
"### Band structure calculation\n",
"\n",
"In this step, we compute the band structure of silicon along some high-symmetry lines in the Brillouin zone.\n",
"\n",
"This calculation is not strictly necessary to compute the mobility, but it is useful to understand the electronic structure of the system under consideration.\n",
"\n",
"Also in this case, we use **three instructions** to specify runtime parameters, prepare the input file, and execute the QE calculation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "09399ee9",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-- -- -- -- -- -- -- -- -- -- -- Calculation: bs -- -- -- -- -- -- -- -- -- -- -- \n",
"Running bs |████████████████████████████████████████| in 4.6s (0.35/s) \n",
"\n",
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- \n"
]
}
],
"source": [
"silicon.scf(control={'calculation':'\\'bands\\''},\n",
" system={'nbnd':12},\n",
" kpoints={'kpoints':[\n",
" ['0.5','0.50','0.50','20'],\n",
" ['0.0','0.00','0.00','20'],\n",
" ['0.5','0.25','0.75','20']\n",
" ],\n",
" 'kpoints_type':'{crystal_b}'\n",
" },\n",
" name='bs')\n",
"silicon.prepare(type_run='bs')\n",
"silicon.run(4,type_run='bs')"
]
},
{
"cell_type": "markdown",
"id": "db8f4400",
"metadata": {},
"source": [
"### Band structure plot\n",
"\n",
"We now plot the electronic band structure computed at the previous step. The zero of the energy axis is set to the value specified manually via `ef0`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1c268ca1",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAFICAYAAACBXE8pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAACBo0lEQVR4nO2dd1hUx9fHv0PvvSmINBU7AvYG1lgSjcauscVeEjXWGEuMLRq7+cVo7LH3XhIL2AUVLCiIgKA0QXpbds/7x8J9WQGl7LILzud55rm7t8ycu7P73bkzZ84wIgKHw+FwlIOasg3gcDiczxkuwhwOh6NEuAhzOByOEuEizOFwOEqEizCHw+EoES7CHA6Ho0Q0lG2AKmFhYUEODg6luiY9PR36+vqKMYijsvB6/3wpS937+/u/IyLLoo5VChFmjNkBmA3AE0BjALoAHIko/IPzinN6bkJEjz5VjoODA/z8/Epl27Vr1+Dl5VWqaziVH17vny9lqXvGWERxxyqFCANwAdAfgD8AXwBdPnLuTgBbPtgXrBizOBwOp3xUFhH2ISJrAGCMfYePi/AbIrpTMWZxOBxO+agUA3NEJFG2DRwOh6MIKoUIl5IJjLFsxlgGY+wKY6ytsg3icDic4qhqIrwXwEQAnQCMBWAO4ApjzEuJNnE4HE6xsMoWRS2vT3grivCOKOJcQwBPAEQSUZtizhkLqWDD2tra48CBA6WyJy0tDQYGBqW6hlP54fX++VKWuvf29vYnIs+ijlWWgbkyQUSpjLGzAEZ/5Jy/APwFAJ6enlRa1xPuqvR5wuv980XedV/VuiOKo3I19zkczmdDlRZhxpgRgJ4A7inbFg6HwymKStMdwRj7Ju+lR962G2MsHkA8EV1njP0IoA6AqwDeAqgJ4EcANgCGVLS9HA6n4ggNDcXff/+N7OxsuLm5wc3NDa6urtDU1FS2aZ+k0ogwgMMfvP8jb3sdgBeAFwC+zkvGAFIA3AQwmoh4S5jDqWIQEa5cuYL169fjzJkz+NDJQFtbGw0bNoSbmxtatmyJQYMGQVdXV0nWFk+lEWEiYp84fhrA6Qoyh8PhKInMzEzs3bsXGzZswJMnTwAAWlpaGDx4MJycnPDo0SM8evQIr169gp+fH/z8/LBt2zbMnz8f8+bNw5gxY6Ctra3ku/h/Ko0IczgcztGjRzFu3DgkJCQAAGxsbDBx4kSMGzcOVlZWMucmJycjICAADx8+xK5du/Dw4UNMmTIFK1euxE8//YRRo0ZBS0tLGbchQ5UemONwOFUDiUSC+fPn45tvvkFCQgI8PT2xZ88eRERE4Oeffy4kwABgbGyMdu3a4fvvv4e/vz+OHz+ORo0aISoqChMmTEDt2rWxbds2iEQiJdzR/8NFuAohkUgQEhKC8+fPCy0FDqeyk5ycjF69emHp0qVQU1PD77//jnv37mHo0KElbskyxtC7d288fPgQhw8fRr169RAREYExY8agZcuWePbsmYLvoni4CFdSJBKJ0Nc1efJktG7dGsbGxqhduza6d++O2rVrY/v27YUGKzicysSLFy/QvHlznDlzBqamprh48SKmT58Oxj46RFQsampq+OabbxAYGIj9+/fD3t4e/v7+cHd3x+rVqyEWi+V8ByWAiHjKSx4eHlRarl69Wuprykt8fDx5e3sTpJNQZJKtrS01atRIeN+uXTt69uxZhdtY1VFGvX9unDlzhoyMjAgANWjQgEJDQ+VeRnJyMn333XfC76V169YUEhLy0WvKUvcA/KgY3eEt4UrG48eP0bRpU1y9ehUWFhYYPHgwfvvtN1y+fBlxcXGIiorCo0ePsG/fPlhZWcHHxweNGzfGggULkJWVpWzzOZxPIpFIsGTJEnz55ZdISUlB3759cfv2bdjb2+PBgwfYv38/IiMj5VKWkZERtm7dirNnz6JatWq4efMmGjdujM2bN0MiqaAIusWp8+eYVL0lfPz4cdLX1ycA5OnpSVFRUR89PzExkcaMGSP8y9eqVYuuXLlSQdZWbXhLWDHExcVRly5dhO/skCFDaPbs2dS+fXvS09MT9qupqdFXX31F58+fJ7FYLJeyExISaPDgwUIZnTp1KvI3Ju+WsNKFT5WSqoqwRCKhJUuWyHwxMzIySny9r68v1atXjwAQY4wWLVokty/u5woXYfnj6+tLtra2BIC0tbWL7G5zcXGhLl26kKamprDPycmJVq5cSXFxcXKx48iRI2RhYUEAyNTUlA4fPixznIvwZybCaWlp1K9fP0FAV65cSRKJpNT5ZGdn08KFCylvMVT64osv6N27dwqw+POAi7D8EIvFtHLlSlJXVycAZGZmJgixl5cXzZ07l06dOiUjsjExMbRs2TKqWbOmIMZaWlo0evToTz4hloTo6Gjq3r27kPfw4cMpOTmZiLgIf1YiHBERQU2aNCEAZGhoSGfOnCl3npcuXSJzc3MCQDVr1qT79+/LwdLPDy7C8uHdu3fUo0cPmVZtfgvUz8/vk9fn5ubSmTNnqHv37kIDQ09PjxYsWECpqanlsk0ikdDmzZtJR0eHAJCDgwP5+vpyEVZkUiUR9vX1JUtLS+ERTJ4eDhEREdSsWTOh9bBly5Yyta4/Z7gIlw+RSERbt26l6tWrC6Lr5uZGAMjc3JwePnxY6jyDg4OpT58+gqDb2NjQX3/9Rbm5ueWy9dmzZ+Tu7i70RdeqVatU3YFEXIQrnQhv3bpV6PPq3LkzJSYmyr2MrKwsmjBhgszjVmm/WJ8zXITLhlgspv3791OtWrWE716zZs2oZcuWBICsrKzo8ePH5SrD19dXaGQgz73t7Nmz5RoH8ff3p9q1a8uMy5QGLsKVRIRFIhFNmTJFqOgffviBRCKR3PIvit27d5Ouri4BIA8PD4qMjFRoeVUFLsKlQyKR0OnTp2V82F1cXGj79u3Utm1boeUqryc+iURC+/fvl+kzdnZ2pmXLltGbN29KnM/z589p4MCBQleHlpYW2dralrrfmYtwJRDhhIQE6tixIwEgTU1N+vvvv+WSb0kIDAwkR0dHAkDW1tZ048aNCiu7ssJFuGRIJBK6ePEitWrVShBDOzs72rp1KyUnJ1Pr1q2FSUYvXryQe/mZmZm0atUqsrOzE8pXV1enr776ik6dOiXTyJFIJJScnEwRERF07949Gj58OKmpqQniO3nyZHr79i3vE1ZkUpYIP378mJydnQURvHnzZrnzLC3v3r2T+RPYunVrhdtQmeAi/HHEYjGdOHGCPD09BfGztLSktWvXUmZmJkkkEho+fDgBoBo1atDLly8Vak9ubi6dO3eO+vTpQxoaGjI2OTo6kqmpqSC4BZOGhgaNHTuWIiIihLy4CFcxET506JAwAcPd3Z1ev35drvzKg0gkoh9++EH4Ak6aNIlycnKUZo8qw0W4aHJzc2n//v3UsGFDGaFbvnw5paSkCOdt2rRJ8GQICAioUBtjYmLot99+k+njzU8GBgZkZ2dHDRo0oNGjRxc5VZqLcBUR4dzcXJo1a5ZMR396enqZ8pI3O3bsIC0tLQJAXl5ecnOCr0pwEZYlIyOD/vrrL5kBN1tbW1q/fn2h77Wvr6/QGt2/f7+SLJZ2Pzx//pxCQkIoPj6+xOMvXISrgAi/e/eOOnXqJPRPrVu3TuVcxG7fvk3VqlUjAGRvb18in83PCS7CUiIjI2nOnDnCBAsA5OjoSFu2bKGsrKxC50dFRZG1tTUBoBkzZijB4vLDRbiSi/CDBw/IwcFBeEy7du1aqcusKN68eUMtWrQQZi/t2LFD2SapDJ+zCEskErp58yb1799fmOWWH89k7969xbYos7KyhO9Thw4dFO75oyi4CFdSEZZIJLRjxw5h9k3Tpk2V2v9bUrKysmj8+PHCD23ChAmUnZ2tbLOUzucowomJibR582by8PCQ8TQYMGAA3bp165NPc+PGjROerCpzFxcX4UoowklJSTRo0CDhizt69GjKzMwsdVnK5O+//xb6iVu2bFkqX8uqyOciwrm5uXT+/HkaMGCATFAdc3NzmjdvXon9yrdu3So8UVX2ri0uwpVMhG/fvi344Orr69OOHTtUrv+3pNy7d0/wt7S2tiYfHx9lm6Q0qrIISyQSevToEc2dO1eIapYfQKpz5860b9++Us2uvHPnjvAHvnPnTgVaXjFwEa4kIpybm0tLly4V+szc3d0V4oxe0cTGxgqreqirq9Mvv/xS7rn5lZGqJsJisZhu3rxJM2bMEILoFJxptmTJEhlf2ZISGRlJNjY2gstjVYCLcCUQ4aioKPLy8hK+xDNmzKhS/agikUjGva5t27Zl+oFWZqqCCCcnJ9OZM2dowoQJgidMfrKysqIxY8bQ9evXy/zklpaWJgS+8fb2rjI+51yEVVSE80eMv/32W2Hwzdrami5evFjqPCsLly5dElo5JiYmdOjQIWWbVGFURhFOT0+ny5cv07x586hFixYyng35oU2nTZtGvr6+5X66EYvF9M033wgt6aoUu5qLsIqJ8OnTp2njxo3UoEEDmS/0119/TbGxsaXOr7IRFxdHPXv2FO571KhR5Y7jWhlQdRHOycmhgIAA2rFjB02dOpXatGkj9MsW9Gxo2bIlzZ8/n/z9/eU6VrFo0SICQEZGRlVuoVkuwioiwgcOHCBnZ2eZ1oSVlRXNmTNHIavCqjISiYQ2bdokjJ7Xrl1b5UWqvKjC/UkkEoqNjaU7d+7QgQMHaMWKFTR69Gjy8PAocnkgxhi5u7vTjBkz6OzZszLTiOXJoUOHCJDG3j137pxCylAm8hZhDXDKxMmTJxEaGiqzLzs7Gzdv3kRycjI6dOiAr7/+Gurq6kqysOJgjGHSpElo3749Bg4ciKdPn8Lb2xv9+/fHqlWrYG9vr2wTSwwRITo6Gi9fvkRISAiio6ORmpoqk1JSUhATEwNTU1NoaGhAXV0dGhoaQtLW1oauri50dHSgq6srvNbR0YG2tja0tLRktpqamiAiiMViSCQSiMViIaWnp+P9+/dISkoS0vv37xEbG4vw8HBkZGQUey/Ozs5o0qQJ3N3d0aRJEzRr1gxmZmYK/fz8/f0xfPhwAMDq1avRrVs3hZZXFWBSkeYAgKenJ/n5+ZXo3EePHmHOnDmQSCTIycnB48ePkZiYKHOOs7MzZs6cieHDh0NHR0cRJqscWVlZWLVqFZYvX47MzEzo6upi3rx5+PHHH1XqMyAiREZGws/PD/7+/nj+/DlevnyJly9fflTYVA0TExM4OjrCwcEBjo6OcHR0RKNGjdC4cWMYGxsrpMxXr17h3bt3UFNTg7q6OtTU1KCmpoasrCx8/fXXePPmDUaNGoVt27aBMaYQG5TJtWvX4OXlVaprGGP+RORZ5DEuwv9PaUQ4n/wKyW9BPX78GA8fPsS2bduElrKNjQ2mTZuG8ePHw8jISBGmqxyvX7/GzJkzcejQIQCAo6Mj1q5di6+++kopP8z4+HjcuXMHfn5+8PPzw/379xEfH1/kuebm5nBxcUGtWrVgZ2cHIyMjGBoayqQXL17Azc0NYrEYubm5QhKJRMjJyUFmZiYyMzORlZUl8zonJwc5OTnIzs4WtiKRSBCyfFHL3xoYGMDExAQmJiYwNTUVXltYWMDBwQEmJiYK/+yICIGBgTh69CiOHj2KZ8+effR8R0dH3L17F5aWlgq3TRlwEVYg5RHhD8nNzcXRo0exYsUKPHr0CABgbGyMSZMmYebMmRXy41EFrl69iqlTp+LJkycAAHd3d4wYMQKDBg2ChYWFQsqUSCR49uwZbt26JaSQkJBC55mZmcHT0xOenp5o0KABXFxc4OLiAlNT00+WUZYfYmWCiHD//n0cOXIEx44dk+l6MzU1hYuLi0z3SWxsLOLi4oRzjIyMMG7cOEydOhV2dnbKuIWPQkS4fv06Dh06BJFIBC0trUKpSZMm6N69O9TU1GSulbcIK30wTJWSImbMSSQSunDhArVv314mvqo8FiCsLIhEItq4caNMpC1NTU36+uuv6cSJE+XyH5VIJPTy5Us6dOgQzZ49mzp16kTGxsaFBqV0dXWpffv2NHPmTDp48CCFhoaWyxtAFQbmFEH+9zU/0A4KDDqPHTuWLl68WKi+Dh8+LAz8/frrrzLfdQ0NDfr2228rPGZwcWRmZtLff/9NjRs3LvQdKSrVr1+/UFAieQ/M8ZZwAeTZEi6K27dvY9asWbhx4wYAoEmTJtiwYQPatGlTWlMrJVlZWTh16hR27tyJixcvQiKRAAAsLCzQvXt31KxZE3Z2dqhRowbs7OxgZ2cHExMTJCYmIiYmBtHR0cL27du3CAwMxIMHD5CUlFSoLHt7e7Rq1UpIjRo1gqamptzupaq1hIkIly9fxqJFi3D79m0A0noZPHgw+vbti9atWxc5yOzn54d27dohMzMTq1atwo8//ggAuH//PlavXo0jR44I9Txr1iwsX768UMuyInj79i3++OMPbNmyBe/evQMAWFlZYezYsbC3txe6ifJTamoq9u/fj6ioKACAk5MTZs+ejeHDh+P27du8JayoVJqWcHx8PI0YMaLUExQkEgkdOHCAatSoIfzbDho0qFJEVJMnb9++pd9++43q16//0ZZIUUvOfJisra2pe/fuNH/+fDp+/HiFLFZaVVrCEomELl26JLMGnIWFBa1cufKT/t5RUVHCkvWjRo0q8sni1atXNGXKFCGI+5AhQyp09mhiYiKNGzdOZkkjd3d32rVrV5HxjguSnZ1N27ZtIxcXF5kngoYNG5bavQ+V3U8YgB2AjQBuA8jI+0AcijhPB8AqANEAMvPOb1fSckojwhMnThQqxtHRkVauXFmq+Kjp6em0YMECYXadnp4e/frrr5/8YlQ1JBIJ+fn50ZYtW+jnn3+mkSNHUufOnalevXpkZGREAMjY2Jjq1KlDXl5eNHDgQJo2bRqtXLmSTp48SVFRUUoJiFQVRPjJkydCHBDkRUZbvnx5iSbbFJyS3L59+08K68WLF8nAwIAAUMeOHSk5OVlet1EkEomE9u3bR1ZWVsLElH79+tGNGzdK/X0RiUS0b98+4Q8HAA0ePLhUeVQFEfYCEAvgHICLHxHhfwAkARgDoCOAY3li7FaSckojwsuWLSvU96iurk6tW7emS5culTif8PBw6tevn5CHq6srXblypcTXV3VUNd5AZRbh5ORkmj59utA6NDMzo2XLlpW4dScWi6lPnz6lnpLs7+8viKKbmxu9ffu2PLdRLKGhodS1a1fhN9WmTRt6+vRpmfOLjY2VmRVqaWlZ6njIVUGE1Qq8/q4oEQbQOG//yAL7NAC8AHCqJOWUZWBu7dq11L59e5nHnfxWxb///lvifP7991+ZhQeHDh1KMTExpbaHUzFURhGWSCS0d+9eIVgPY4wmTJhACQkJpcpn3rx5whNKUFBQqa4NDQ0V1qFzcHCg58+fl+r6j5GTk0PLly8Xni5NTExo69atJBaLy5zn+fPnheWYTExM6MCBA3za8kdE+GcAOQD0Pti/GEA2AO1P5V0e7wiRSETr1q2T6T8CQF988UWJA7hnZWXRkiVLhC+RsbEx/fHHH5+NF0VlorKJ8OPHj6ldu3bC97JFixbk7+9f6ny2bNkiPPWV5omvIHFxcdSsWTOhFX7r1q0y5VMQf39/mRWehwwZUq5GTGZmJn3//fdCfu3atRMiBXIRLl6EDwB4UcT5/fPOr/+pvOXlovb8+XOZmKy6urq0d+/eEucZGhpK3bp1E65v2rQp3b9/v9S2cRRHZRHhzMxMmjt3rhDjxMLCgrZv316m1uGJEyeEgdItW7aUy660tDThEd/Q0JAePHhQpnyys7NpwYIFwv05OTmVO3JhSEgINWrUSHCxW758uUxDiItw8SJ8CcCdIs7vlHd+20/lLW8/4WXLlsl0U3h6elJ8fHyJ8pVIJHTkyBFhZQPGGI0fP77Uj44cxVAZRPj69etCFxdjjCZOnEiJiYllyuvGjRvCE9rChQvlYp9IJKIBAwYIXgcvX74s1fUBAQHk5uYm/L6mTp1KaWlp5bLp3LlzZGJiQgDIxcWF7t27V+icz95PmDH2HYCtAByJKLzA/ksAjIioxQfndwJwGVIvCd8i8hsLYCwAWFtbexw4cKBU9qSlpcHAwKDY4+/fv8ecOXMQHBwMAFBXV8fYsWPRv3//EuWfkZGB3bt348iRIxCLxTAyMsLYsWPRrVs3pfhbcqR8qt6VSXp6Ov766y+cOnUKAFCzZk3MnDkT9evXL1N+YWFh+P7775GamoqePXti+vTpcpt6LhKJMG/ePPj5+aF69erYuHHjJ4MMicVi7N+/H7t27UJubi5sbGwwe/ZsuLm5ldkOIsI///yD7du3g4jQqlUrzJs3D/r6+oXOLUvde3t7Vx0/YRTfEj4IFemOKIrt27cLLQkAVK9evVItlvnkyROZ1TrK2qfHkQ+q2hI+deqU8PSkqalJCxYsKJfbY2RkpLCuYK9evRSyTH1KSgp5enoKXhNJSUnFnnvz5k3hXEC6+nd541enpKQI3h4AaPHixR/truHdEcWL8AIUPTC3CBUwMFcS0tPTqUOHDjIubcuWLSvx9fm+jwVHt0eMGPHZTfRQBVRNhGNjY4VHewDUvHlzevz4cbnyTExMFCbTtGrVqlSLe5aWuLg4wWvCy8ur0GD23bt36YsvvhDuz97eni5fvlzucl+8eEF169YlQBqA/vTp05+8hotw8SLcJG//8AL7NAAEAThdkrwVLcL5HDlyhPT09IQvVO3atSk8PLzE1ycnJ9O0adOE/mYdHR2aNWsWvX//vtS2cMqGqoiwRCKh3bt3C3E59PT0aO3ateX2qMnIyKC2bdsSAKpbt26FjEWEhYUJDYy+fftSbm4u+fv7y/joGhoa0vz58+Uy2ePs2bPChKB69eqVeCHez1aEAXyTl/6XVyET8t63L3DOAQDv84S6I4AjALIAuJekjIoSYSLpqHVBh3I1NTWaP39+qfIICQmh/v37C3mYmprS6tWrS+wSxyk7qiDC4eHhMt+hzp0706tXr8qdb0ZGBnXp0oUAkK2tbYUu4hoQECBMgspvoQIgfX19mjt3rlzWqpNIJLR8+XJijBEA6tOnT6mmIX/OIkzFpGsFztEFsAZATJ743gXgVdIyKlKE8zl9+rQwnRMA2dnZlTri1L1792T6i+3t7WnTpk0f7VvjlA9lirBYLKYNGzaQvr6+8Oe7c+dOuUzfTktLE7rMLC0t6cmTJ3KwuHT4+PgIyzPp6urSzJkzSz1DrTjS09Np4MCBwm9lyZIlpf7cPlsRroikDBEmkvo69u7dW/hiMMZo2LBhpRoEkUgkdPbsWZkFR/X09Oi7774jPz+/cttYXtLT0yksLIxev35N8fHxlJ6eXq6ZTMpGWSL84MEDmTCT/fr1o+joaLnknZqaKkzosLa2LtdU37KSmZlJP/30k+D3O378eLnFBomIiKAmTZoQADIwMKATJ06UKR8uwlVQhPO5ceMGWVpaCj8wY2PjUi+UmJubSwcPHpQJzII8H+WtW7cqZHHH1NRUCggIoGPHjtGqVato0qRJ1LdvX2rTpg25uLiQoaFhcU8xpKurS+bm5lS/fn0aNWoU/fXXXxQYGKjyswQrWoSTkpJoypQpwmSJatWq0fHjx+WWf3JyMrVu3ZoAUPXq1eU6nbikXLlyRRicyx+4BkBz584ttxD7+PgIvy1nZ+dytfC5CFdhESaSPmpOnTpV6K8CQN7e3mUadAsKCqJp06aRqampTN9znTp1aMCAAbRs2TI6d+4cvXnzptgvef6Kvv7+/nTixAnauHEjzZ49mwYPHkytWrUS5tV/KmlpaZGdnR3Z2dmRmZkZ6erqfvR8AwMD6tChA/3000/k5+enlEhpH6OiRFgikdCePXuEz1ldXZ2mTZsm1yhkSUlJQuvazs6OQkJC5JZ3SXj37h2NHDlSqPt69erRjRs36OjRo4IQl2eCyJ9//ikMYnfu3Lncg4xchKu4COfz8uVLmVaBhoZGmb+IGRkZtHv3bmrTpk2hQEMFR52NjY3J0NCQ9PT0SEdHhzQ1NUsUz1dLS4tcXV2pe/fuNGXKFFqzZo0Q6CQoKIgSExOLFFGxWEzp6ekUHx9Pd+7coXXr1tHAgQPJwcGhUBnOzs40b948CggIUAlBrggRfvLkicwqFa1bt5b7ChWJiYmC3629vT2FhobKNf+PkR9QKL+FqqWlRUuWLJEJi3ngwAHhO/jrr7+WKv/s7GwaO3as8PlNnz5dLn7OXIQ/ExHOZ926dcIgRX5fXXnKzMrKogcPHtD27dvp+++/p/bt2xe5HFDBZGpqSo0aNaLu3bvTuHHj6Ndff6WdO3fS1atX6fXr1wrp242OjqYTJ07Q5MmTC7W269atS4sWLaLg4GC5l1tSFFnvr1+/ptGjRwutQEtLS9qxY4fcP+egoCCqV68eAdKY2KVxkywvDx8+FFzgAGlM4uK6QPbu3Ss8Gf72228lyv/t27dCoHptbW3atWuX3GznIvyZiTCRdFCrV69eMkLUrl07ufluSiQSSkhIoMTEREpOTqbU1FTKyMigrKwshcyQKi25ubl05coVGjt2LJmbm8t8Di1atKA//vijwmNqKKLe4+LiaNq0acKfrrq6Ok2YMKHM8R4+xoEDBwSvnLp161bYhJ/4+HgaP3680Lq1tLSkv//++5NPNzt27BCEeO3atR899+7du0IAdjs7O7kHv+Ii/BmKcD4BAQEy0dnU1dVpypQpKiGUFUVOTg5duHCBhg8fLuPal79w6PHjxytk+Rx51ntycjItXLhQ5n4GDBhQ4skDpSE7O5umTJkilDNw4MByT/stCfmLveaPT2hoaNC0adNKNdaxdetWwe5WrVrRtGnTaN++ffTy5UtBxLdv305aWloESIO5KyImNxfhz1iE89m8ebNMHAp9ff1Ptg6qImlpafTPP/9Q165dZfquTU1Nafjw4XT69GmFLRclj3qPiIig+fPny7Tuu3fvXuawjiUpr3nz5sKf1qZNmxTevy6RSOj8+fMysX47depUZve3//3vf0WOa5iZmQn3BoAmTpyosD9jLsJchIlI6k85fPhwGfGxsrIqs+9jZefNmze0atUqmR87II0HMGTIEDp+/LhcYx+Utd5zc3Pp3Llz9OWXX8rUXZs2bcjHx0du9n3I+fPnBbGvUaMG3blzR2Fl5XPz5k2ZQPKOjo50/Pjxcgt/QkICXbhwgX755Rfq2bOnsGRS/p/L1q1b5XQHRcNFmIuwDLGxsdSxY0cZ4aldu3aRcVA/F549e0ZLliyRiTULSCevdOnShZYvX0537twpVzdOaes9MjKSli9fLuP5oampSQMHDqTr168rrEXq4+NDnTt3Fsr84osv5DL192MEBATIxHswMzOjVatWKWw6vUQioYiICDpx4kSFDNZyEeYiXCRPnjwp1AqsW7cu+fr6Kts0pRISEkIrVqyQCX9Y0Be5W7dutHLlSvrvv/8+6i/9IZ+q94SEBDpy5AhNnDiR6tSpI1Oug4MDLV++nGJjY+Vwh4WRSCT077//yri3GRgY0PLlyxU6SzEkJISGDBkiDKDp6+vTzz//XOWmz3/2Qd0ViaenJ/n5+ZXqmmvXrsHLy0sxBpWBixcvYsyYMYiMjBT21apVC//73//QsWNHJVqmfKKjo3H9+nVcvXoV165dEwLtF8TY2Biurq5wdXVF3bp14eDgAGNjYxgZGcHQ0BBGRkYwMjLCvXv3UK9ePcTGxgopLi4Ob9++xc2bN/Hw4UMU/G0ZGBigU6dOGDNmDLp27Qp1dXW5319ubi4uXbqEX3/9Fbdv3wYAmJiY4Pvvv8fUqVM/GSy9rDx8+BArV67E4cOHIZFIoKWlhfHjx+Onn36ClZWVQspUJmX5zTPGig3qzkW4AKouwllZWUhOTkZSUhKSk5ORmpqKnJwciEQiiEQi5ObmCtuXL19ix44dePv2rXC9o6Mj1q1bh6+++qpC7FV13rx5g2vXrsHHxwdPnjxBUFAQ3r9/L5e8tbS00KpVK3Ts2BEdO3aEp6cnNDU15ZJ3Prm5uXj06BGuXbuGa9euwdfXFykpKQAAc3NzTJ8+HZMmTYKxsbFcywWkT9DXr1/HihUrcPHiRQCApqYmhg0bhgULFqBmzZpyLxMAIiIisG3bNpibm8PDwwNNmjSp8BVO5C3CGvIwilM8RITs7GxkZWUhMzMTGRkZSElJQWpqKlJSUmRSUlISkpKS8P79e2Gb/zo5ORnZ2dnlsiUsLAy9evWCnp4eBg8ejOXLl8PCwkJOd1r5sLW1xZAhQzBkyBAA0rqKj4/H8+fPERQUhKCgIERFRQl1VbDOMjIyYGFhAWtra5lkZWWFxo0bo3Xr1tDT0yu3jWKxGLGxsXjz5o1MCgwMlBHdfJydnTF+/HiMHz9eIeKUm5uLU6dO4bfffsPdu3cBAPr6+hg3bhymTZsGOzs7uZeZz7lz5zB06FCZP0rGGOrUqQMPDw+4u7ujb9++CvsDUBS8JVyA0rSET5w4gXnz5iEtLQ1aWloQi8UyKScnB1lZWcjKyoK8PmNNTU2YmJjA2NgYJiYmMDQ0hJaWFjQ1NaGhoQFNTU1oampCXV0dCQkJiI6ORnR0NOLi4iCRSIrM08HBAb/++isGDhyokEfkyoREIsGzZ89w//59PHnyBMHBwYiPj0dGRobwJ5qdnY2cnBzk5ORAV1cXOjo6MlttbW2oqakJSV1dXXjNGCtybTaJRILs7GxkZmYK35n88t69ewexWFyszc7OzvDy8oKXlxfat2+PGjVqKOSziY2NxbZt27Blyxahq8vc3Bzff/89Jk2apLCuDkD6R7Rw4UIsXboUANC1a1fY29vD398fjx8/hkgkEs41NTXFnTt3ULt2bYXZw1vCKkJKSgqCgoJKdK6WlhZ0dXWFlN+vWLCP0dDQECYmJjA1NS1ya2JiAh0dnTItsCgWixEfH483b97g+PHj+OOPP4TWRHh4OIYOHYrhw4ejY8eOWL9+PVxdXUtdRmXi7du3OH/+PHx9ffH48WNEREQgJSVF5sdcEjIzMxVkoSyWlpawtbUVkp2dHZycnNCuXTuFiS4gfTK4ffs2Nm/ejMOHDwufj4uLC6ZMmYLRo0cXuRCmPImLi8OgQYNw5coVqKmpYenSpZg1a5awyG12djYeP34Mf39/7Nu3Dz4+PujZsyfu3Lmj0D8GecJbwgUoTUv4/fv3ePv2Lfz9/dGyZUuoq6vLJC0tLejo6EBHR0clW5jBwcGYN28ezpw5U6ibw8TEBN999x3mz5+vkP7EikIikcDHxwdnz57F7du3ERISgsTEROTm5hZ7DWMMOjo6MDExgZWVFaytrWFoaCj8YRobG8PY2BiRkZEwMjJCVFQU3rx5I2yTk5OFvPL7hTt06AA3N7diV8fOLzM/5besdXR0YGZmBm1tbbl/Nh8jJSUF+/btw5YtW/Do0SMAgJqaGnr27ImJEyeic+fOFbLS940bNzBgwAC8ffsW1tbWOHDgwEdboGlpaWjbti0ePXoELy8vXLx4EVpaWnK3S94tYaW7halSqswuauXh0qVLMsHgC6batWvTwoULK3SJm7KQmppKhw8fpjFjxpC7uzuZmJh8NCiRjo4O1axZk7p06ULz5s2jkydPlio4enH1HhcXR3/++Se1adNGpjxLS0v64YcfKCwsTD43LGckEgndunWLRo4cKbP+oYWFBc2ZM6dC7RaLxbRq1SohgFHbtm3p7du3Jbo2MjJSWKdu1KhRCvG/5n7CXIQVRmpqKk2fPl3mR1gw6enpkaenp1JFWSwW0/379+m3336jXr16kbOz80djE6upqZGFhQW1bNmSfvjhBzp79qxcJg2UpN7DwsJo6dKl5OrqKhPvY+jQoRQYGFhuG+RBQkICrVu3TlhVOT95eXnR3r17K3y9wvj4eOrevbtgx8yZM0s9qeb+/fvCd2LVqlVyt5GLMBdhhSMWi+nkyZPFto7zk7a2Ntna2lKbNm1o/PjxtGvXLnrz5k25y09ISKCrV6/SH3/8QVOmTCEvLy+qWbPmJwPBa2pqkq2tLXXs2JEWLlxIDx8+LP+HUQylqXeJREJ+fn40bNgwoXUHgHr06KG0yTT379+nkSNHysQgsbKyolmzZiktROj169eF6GempqZ08uTJMud1+PBhAqRLhclzBRIiLsJchCuYW7duUdOmTWVmXhXXUs5PjDHS0tIiAwMDMjc3pxo1apCrqys1bdqUPD09qVGjRlS3bl1ycXGhmjVrkq2tLZmampKWlpbMiiIfy9/Q0JDq1q1LAwcOpC1btshtnbWSUtZ6DwsLoylTpsj8obRq1YqOHTum8CWdMjIyaOfOndSsWTOZz7NLly505MiRCok+VxS5ubm0ZMkSIZZGq1at5PKktWzZMuEJTp5BkbgIcxGucMRiMW3fvl0Irs4Yo4EDB9KGDRto/Pjx1KZNG7K1tZVpVZU3qaurk76+PlWvXp2aN29OI0eOpC1bttDLly+V/XEQUfnrPT4+nhYsWEBmZmbCPbu4uNCmTZsoLS1NPkbm8eLFC5oxY4ZMWaampjRjxowKX8roQ6Kjo2Vin8ydO5dycnLkkrdEIqFvv/2WAJCtrS1FRUXJJV8+bVmBqPqMOWWTkpKCX3/9FevWrYNIJIKxsTFWrFiBsWPHCqPlOTk5CAgIQFRUFGJiYhAbG4v4+HgkJibi/fv3UFNTg7a2towngK6uLiwsLFC7dm00aNAAtWrVqpDR9/Igr3pPS0vD9u3bsW7dOoSFhQGQ+rqOHz8ekydPRvXq1cuUb1ZWFo4ePYqtW7fi+vXrwn5PT09MmjQJAwYMgK6ubrntLw/nz5/HiBEjEBcXB0tLS+zZswddu3aVaxnZ2dno3LkzfH190bhxY/j4+MDIyKhceXLvCN4SVjovXryQGTxp1aoVPX78WNlmVSjyrvfc3Fw6cuSIsCQP8vq4e/ToQatXryY/P79PdldIJBIKDAyk77//XmZxV319fRo9ejTdvXtXrjaXlczMTJo6dapgn7e3d4m9H8rCu3fvqHbt2kLXS3lb2rw7gouwSiCRSOjw4cOCO5CGhgbNmzdPrjF7VRlF1vvt27epX79+hRZZNTY2pi+//JLWrFlDx48fp3Xr1tHUqVOpZ8+eVK9evUIDlx4eHrRlyxa5rsxcXh4/fixE+9PQ0KAVK1YovC+cSLpwbv6CoqNHjy6X6xoXYS7CKkVSUhJNmDBBGFBzdnamy5cvK9sshVMR9f7mzRvavXs3jRo1ihwdHUvUl25lZUXjx48nf39/hdtXGiQSCW3cuFEYN3BxcanwmNd37twR/qiWLFlS5ny4CHMRVklu3bol49I2YsQIhSxQqSooo97Dw8Np586dNHz4cOrWrRtNnDiRVq9eTceOHaNHjx6pVIu3ILGxsTJB3keNGlUh69oVxfHjx4UGw+7du8uUBxdhLsIqS3Z2Ni1btkxYLdjGxoaOHTumbLMUAq/3knH8+HGhG8DExIQOHTqkbJNow4YNQp/7f//9V+rr5S3Cqj0EzalUaGlpYe7cuQgICEDr1q0RExODPn36oH///oiNjVW2eZwKJDk5GSNGjMDXX3+N+Ph4dOjQAQEBAejXr5+yTcOUKVMwbdo0iEQi9OnTB0+ePFGqPVyEOXKnTp068PHxwcaNG6Gvr4/Dhw+jXr162LNnj/Txi1OluXr1Kho1aoRdu3ZBR0cH69evx+XLl2Fvb69s0wRWr16Nvn37Ijk5GV26dMGrV6+UZgsXYY5CUFNTw+TJk/HkyRN07twZiYmJ+Pbbb9GzZ0+8efNG2eZxFEBmZiamT5+ODh064PXr1/D09MSDBw8wdepUlfP7VlNTw549e+Dl5YXo6Gh07NhRad/LEn0yjDFtxpgXY2wOY2wDY2wrY2w5Y2wEY8xJ0UZyKi8ODg64ePEitm/fDmNjY5w7dw7169fHjh07eKu4CnH79m24u7tj7dq1UFdXx6JFi3Dr1i3UrVtX2aYVi66uLk6dOoWmTZsiPDwcnTt3Rnx8fMUbUlxncd4PxAXAJgDvAUgA5AJIABAFICNvnxjAPQAjAKh9LD9VT3xgTrG8efNGZpS8a9eu9Pr1a2WbVSZ4vUtJT0+n6dOnCx4Hrq6uFe56Vl7evXsnePa4u7t/cnXoChuYY4xtBvAMQFMAv+RtdYjInIjsiEgPQDUAfQA8ArAGwFPGWHO5/ktwqgzVq1fHqVOnsGfPHpiamuLixYuoX78+tm3bxlvFlZD8qcBr1qwBYwxz5szBw4cP0bRpU2WbVirMzc1x6dIlODs748GDB+jZsycyMjIqzoDi1BnAcQBuxR0v4nxtAFMBjC3pNaqWeEu44nj79i316tVLaBV37txZ5QPHF+Rzrve0tDSaMmWK0Ppt0KAB3b9/X9lmlZuwsDCys7MjAPTFF18UG1WO+wl//I/AC0XPJEoqyfVchCsWiURC+/btE6J7GRoa0pYtWxSyGoK8+Vzr/eLFi8LsPQ0NDfr5558pKytL2WbJjaCgIMGv+csvv6T3798XOqciuyO+ZYyVf81u5TAVQMsCqZNyzeEUBWMMgwYNwrNnz/D1118jNTUV48aNQ5cuXRAREaFs8zgFiIuLw9ChQ9G1a1eEhYWhcePGuH//Pn755ZcKXwNPkbi6uuLixYswNjbG6dOn4ebmhlu3bim0zI95R+wEEMMY28kY81aoFfIniIjuFEili0/JqVCsra1x9OhRHDhwAObm5vj333/RoEED/Pnnn/lPOBwlQUTYsWMH6tati3/++Qe6urpYuXIl7t+/Dzc3N2WbpxCaNGkCPz8/eHp6IiIiAu3atcPSpUshFosVU2BxTWQAHQHsApACqQdEBIBfAdQu7hplJ/x/d0SnslzPuyOUT2xsLPXt21foSurQoQO9evVK2WYV4nOo9xcvXpCXl5dMv31oaKiyzaowsrOzaebMmcL9e3l5UVRUVMX3CQPQAzAMwCVIXdTEAG4DGA/A5FPXV2QqIMKxeXYmANgHwL4k13MRVh0OHTpEFhYWwvI0GzZsILFYrGyzBFSt3lNSUujZs2d048aNIvsxS0NGRgYtXLhQiAFiYWFBe/furRR99Yrg4sWLwqoypqamNHDgwFLHJC6XCJOsyFUDMAtAIKQ+wpkADgPoWZp8FJUANAGwGsCXANoD+AFAHIA3AKw+dT0XYdUiNjaWBgwYILREWrduTc+fP1e2WUSkvHrPzc2lf/75h0aNGkVdunShevXqkZGRkcxANGOMGjZsSBMnTqR9+/aVyhf79OnTMmEzR4wYQe/evVPgHak2GRkZdOnSJZo0aZLM5zxnzpxS5fMxES7z8kaMMbe81vAYaa8GaZQpIwXDGHOHdDLJCiKaX8TxsQDGAoC1tbXHgQMHSpV/WloaDAwM5GEqpxhu3LiBtWvXIjExEZqamhg5ciT69+8PdXV1pdlU0fUuFotx9epV7N69G5GRkYWOa2lpwdLSEnp6eggLC0Nubq7McWtrazRq1Aju7u5o0qQJrK2tZY5HR0dj06ZNwiCUo6Mjvv/+ezRu3FhxN6WCZGZm4vnz53jy5AkePnyIJ0+eQCQSCcfV1NSgoaGBhQsXolWrViXO19vbW77LGwHoAGAHgGRIW8QvypJPRSVIJ51c/NR5vCWsuiQmJtKIESNkVo149OiR0uypqHoXi8V04MABqlu3rnDvjo6OtGbNGjp79iwFBARQQkKCTFdBRkYG+fj40LJly6h79+5kbGxcyG3T2dmZxo4dSwcOHKDFixcLwdYNDQ1p7dq1cltsU5WRSCQUHh5O+/fvp8mTJ5O7uzupq6sXeqpwd3enWbNm0cWLFyk9PZ0uXrxY6rIgj+4IAHUBLAfwGtL+1vcA/gTQsqR5KCvlifCFT53HRVj1uXDhAtnb2xPyVmSeOXOm3FcnLgmKrneJRELHjh2TCZRfs2ZN2rZtW6kFUiwWU0BAAK1bt46++uqrQt0X+WnIkCEKXetNmYhEInry5Ant2bOHZsyYQR06dJBZfTo/qaurk4eHB02ZMoUOHjxI8fHxhfKq0IE5AJYAvgfglye8IgBnAfQHoP2xa1UlAfDMs/2XT53LRbhykJKSQpMnTxZmbDk4ONC5c+cq1AZF1vubN2/oyy+/FIShRo0atGXLlmJncJWW9PR0+umnn8jc3FxGgBo0aEBLliyh4OBguZSjDDIyMujRo0d04MABWrRoEQ0cOJDc3NyElv6HydzcnHr06EFLly6lq1evlugPvcJEGMAZADl53Q2BAGYAsCnufFVIAP6B1I2uT16XyQwA7/Ja7xafup6LcOXi7t271LhxY+EHNWDAgAprySmi3iUSCe3cuZNMTEwIeQt7btq0SW4z0jIyMmjDhg1Uo0YNma6NoUOHCmXmpyZNmtCKFSvo0aNHKuWVkpOTQxEREXT9+nXauXMnLVq0iIYPH07t2rUje3t74Y+5qOTg4EBff/01LV68mE6dOkWRkZFl8vioSBGOA7AOQJPizlG1BGBu3h9Gcl6rPRLAXwCqleR6LsKVD5FIRKtXryY9PT1BuDZv3kwikUih5cq73iMjI6l79+6CYPTo0YOioqLkknd6ejr99ttvZGVlJeRft25d2rNnj/A5ZWdn05kzZ2jYsGFkaGgoI14WFhbUr18/+t///kfBwcEKcVVLT0+nsLAwunPnDp06dYq2bt1KS5YsofHjx9OXX35J7u7uZG1t/VGRRd5UaldXV+rVqxfNnj2bduzYQbdv3y6X255EIqG3b9/SiRMnaMKECVS7dm0KCgoqVR4fE+FivSMYYxpElFvkwSqKp6cn+fmVbnLdtWvX4OXlpRiDOCUmPDwckyZNwrlz5wAADRo0wO+//44uXboopDx51TuRdEbatGnTkJKSAhMTE6xfvx7Dhg0DY6xceefm5mLnzp1YuHAh3r59CwBwd3fHTz/9hN69excbaD0rKwsXL17EsWPH8N9//xUKdm5nZ4dGjRrBxsYG1tbWsLGxEV4bGRkhMzMTGRkZyMjIQHp6urBNTExEQkKCkPLfx8fHIy0trUT3xBiDtbU1HBwc4OjoKGzzX9esWROamppl/syICA8fPsSZM2dw+/ZtPH36FNHR0YW8TZYsWYL58ws5W33M7vJ7RwCwhTRcpR+AVwAa5O3/AUDzkuajyom3hCs3EomEjhw5Qg4ODkLLqFu3bvT06VO5lyWPen/27JnMjLSvvvpKLt0p+YN6rq6uQt7u7u507ty5UrdiJRIJBQcH0//+9z/q16+fMIFG3klLS4vs7OzIw8ODunXrRiNGjKDZs2fThg0b6OjRo3Tnzh16/fq1Qrw2MjMz6ezZs/Tdd98V6icvmNTU1MjGxobc3NzowoULpSoDH2kJl8i3lzFWH4Av/n+2XBMAWnmHawJoBmBwSfLicBQFYwx9+/ZFjx49sGHDBixduhTnz5/HpUuXMG7cOCxatAiWlpbKNhMZGRlYsmQJfv/9d4hEIlhYWGDdunUYPHhwuVu/vr6+mDVrFu7cuQMAcHJywtKlS9G/f/8yLTHEGEOtWrVQq1YtjB8/HhKJBE+fPkVYWBhiYmIQGxuLmJgY4XVqair09PSgr68PPT09mWRmZgZzc3Nhm//a0tISxsbG5b73kiASifDy5Us8ffoUT58+xY0bN+Dj44OcnJxC5xoYGMDd3R2dOnVC165d0aRJE2hqasr96bekEyx+BxAEoCuALEgH7PK5BWCl3CzicMqJjo4OZs2ahREjRmDRokXYsmUL/vjjD+zduxcTJkzAlClTYGtrqxTbTp06halTpwpR4saOHYtly5bB3Ny8XPneuXMHixYtwsWLFwEAVlZWWLBgAcaMGQMtLa1PXC1Leno6goODERwcjOjoaEFoC24lEokgrrq6utDT04ORkRFq1KiBGjVqwN7eXiaZmppWiMgCQE5ODiIjIxEeHi6kkJAQPH36FC9evJCZfPEh9erVQ79+/dCzZ0+4u7tXyNp4JRXhNgAGEVEaY+zDaUqxAGzkaxaHU36srKzwxx9/YNKkSfjxxx9x4cIFrFy5EmvWrMHAgQMxffr0CosE9vLlS0yfPh2nT58GALi5ueF///sfWrRoUa587969i0WLFuHChQsApK23H3/8EdOnT4ehoeFHr83IyEBgYCACAwMRFBSEoKAgPH/+XCFhRPX19WFjYwMrKytYW1vLJGNjY+jq6kJHR0dmq6GhAZFIhJycHJmUlZWFxMREvHv3rlCKiorCmzdv8rtQi0RNTQ0SiQSAdKZhx44d0b9/f3Tr1q3QTMKKoKQiLPnIMQtIY0hwOCpJ/fr1cf78edy5cwdr1qzB0aNHsWfPHuzZswcdOnTAjBkz8MUXX8i91SMWi3Hu3Dn873//w4ULF0BEMDQ0xK+//oqJEydCQ6PsM/3v3buHRYsW4fz58wCk4jt16lRMnz69yFZ1RkYGAgIC4O/vDz8/P/j7+yMoKKjI8IwaGhqoVasW6tSpAzs7u0KDb9bW1tDQ0BAG4AoOxCUmJiIyMhIRERF4/fo1Xr9+jYiICKSlpSE0NBShoaFlvueSoqamhho1asDBwQG2trZIS0tDUFAQXr58CQCQSCTw8PDAmDFjMGjQIBgZGSncpo9R0m/BPQAjAZwu4lh/ADflZhGnXGRlZSE6OhpxcXHCCPT79+/x/v17JCcnCz+a7OxsZGVlISsrCzk5OTKPaPmPjflbHR0dGBgYwMDAAIaGhjA0NISRkRGsra3h7OwMV1dXWFlZKeV+S0OLFi1w6NAhhIWFYcOGDdi2bRuuXLmCK1euwNraGp07dxZStWrVylxObGws/v77b/z1119Cq1JbWxuDBw/G0qVLy5w3EeHq1av47bffhG4HAwMDTJkyBTNmzJAR38jISNy6dUtIjx49KjTCr66ujoYNG8LNzQ316tWDq6sr6tatCycnp3J5GBRld3JyMmJjYxEbG4u4uDjhdX4/clZWFjIzM4VtZmYmcnNzoaWlJSRtbW3htZmZGSwsLGBubg4LCwvhdfXq1VG9enVcv34du3btwvHjx5GVlQUAMDQ0xJAhQzBmzBi4u7vL7f7KS4kC+DDG2gP4F8BVSEND/g2pT259AAMBtCOiuwq0s0KoaBe1rKwsvHv3DklJSUhKSkJCQoLwPjExEUlJSUhNTUVycjJSUlKQmpoquPzkC6hIJIJIJIJYLP7oI1hFoK6uDm1tbRgYGMDKygo1a9ZEnTp10KRJE7Rs2RKOjo4V0sdWUpKSkrBt2zZs2rSp0CN4w4YN0aVLF7Rs2VJ4jLaysoKRkREYY7h27Rrat2+P6OhovHz5EqGhoXj58iWePHmC8+fPC39qTk5OGD9+PEaOHAkLC4sy2Zmbm4ujR49i1apV8Pf3ByB9vM8XXzMzMzx9+hQ+Pj7w9fXFrVu3CgX5UVNTQ/369eHh4QFPT094eHigUaNG0NOrrIvnyEJEePLkCfbs2YO9e/ciOjpaONa+fXsMHz4c/fr1k0vQpbL85j/molbiKGqMsR6QTt5wLrA7HMAkIjpfKotUlNKI8KpVq7Bq1Srk5ORAQ0NDcDeRSCTC9sNU8LiiUVNTg7q6OjQ0NKChoSHTotDS0iq0T1NTE4wxwbb8rUQiQXZ2ttBKyc7ORnZ2NnJycoTXpVlxQE9PDzY2NqhduzY8PT3h7e2NNm3alHrwSJ4QEYKCgnDp0iVcunQJ169fL3a13fxoZWpqakhISCjyPDU1NfTs2RMTJ05E586dy/zHk5GRgR07duD3339HWFgYAMDS0hKTJ09Gq1atEBgYKAhvYmKizLXGxsZo2bIlWrVqhdatW6NZs2ZVLtpfvvAePnwYhw8fxvPnz4VjLi4uGD58OIYOHQoHBwe5lqs0ES6QmQsAKwAJRPSiVBerOKUR4bFjx2Lr1q1yKZcxJoimpqYmNDU1oaWlJQxQ6OnpwcDAAEZGRjA2NoaJiYng5mNpaSkMdtjY2MDCwqLCW5sSiQRxcXF4/vy50CJ8/vw5wsPDERMTg6SkJOGRsDh0dXVRo0YNNGrUCB06dMDXX38NGxvljPdmZ2fj1q1buHTpEp4+fYr4+HjExcUhLi6u0KQCc3NzuLi4wMXFBc7OznB2doaXlxfs7e3LXH5wcDD++usv7NixQxBXOzs7eHp6Ij09HXfu3EFqaqrMNXZ2dmjfvj3atm2LNm3aoG7duir11CEvPia85ubm+OabbzB8+HC0aNFCYd4YShfhqkxpRPj+/fs4e/YsXr9+DWdnZ6irq8skLS0twX1HR0dH8JvU1dWFmZkZzMzMoKenVyV/KEUhkUgQEhKCK1eu4ObNm3j69Clev36NpKQkYaT6QzQ1NWFjY4OGDRuiQ4cO+Oabb1CzZs0KtlyWjIwMxMfH47///kOfPn1gYmIil3xzcnJw8uRJ/Pnnn7hy5Yqw38jISOi3L4izszPat2+Pdu3aoV27dnBwcKgwF7CKJisrC1evXsXZs2dx9uxZhIeHC8fMzc3Rp08f9O/fH15eXuUa7Cwp8hbhj82Q61PcsY9cUw1Ai9JepyqJz5hTDuHh4bRx40bq27cv1apVi3R1dYudtaSpqUk1atSg7t270+rVq5W2/pw86l0ikVBgYCD9+OOPZGpq+tEZZa6urjRu3Djat2+f3GJKqDJhYWH0559/0pdffinEBclPlpaWNGbMGLp8+bLCY4QURUUG8HkD4BGkq2eYFXde3rltIQ2Ukw5g7MfOVeXERVh1SE1NpQMHDtCIESOoQYMGpK+v/9GgLba2ttS5c2dasmQJBQQEKDzyV1nrPTc3l/7991/q16/fR4W3YcOGNGnSJDp48CBFR0fL13gVJDIyknbv3k0jR46UmXaen9zd3ennn3+mO3fuKD2qm7xF+GNt91oAfgTwC4CNjLEgAAEA4gFkAzAF4ARpvF5jAD4AOhPRrY/kyeGUCAMDAwwYMAADBgwQ9mVkZODMmTM4d+4c/Pz8EB4ejvT0dOTm5uLNmzd48+YNLl++jJ9//hmMMRgbG8Pe3h6NGzdGu3bt0L17d1SvXr1C74OI8PLlSxw8eBAnT55EQEBAkTO26tSpg27dusHLywtt2rQp9ww6VUYsFuPZs2e4e/cu7t69i+vXryMkJETmHBMTE3h5eaFHjx5KqbeKpFgRJqIMAL8wxlYA+BrSKcstAFQHoAPpSsbPAawHcJCInheXF4cjD/T09NC/f3/0799f2JeVlYXz58/j/PnzuH//Pl69eoWUlBQQkeD6FxgYiD179gCQei7o6+sLLnSurq7w8PBAw4YNUbdu3XJ7EKSnp+Py5cs4duwYbt++jYiIiCJF19zcHN7e3hg8eDA6dOgAY2PjcpWrqojFYoSFhSEgIAD37t3D3bt34efnh/T0dJnzDA0N0a5dO3h7e8Pb2xuNGzdW6hqCFckne7GJKAfAwbzE4agUampqaNKkCSwtLdGxY0e8efMGMTExePHiBUJCQhAbG4u0tDSIRCIQSV0EU1NTkZqaitDQUJlBsHwYY4KnSr77Xr5Ln7a2NnR0dARvj7S0NMFvWyQSFTvIqK+vj7p166J///4YNmyY0jw/FEVubi6ioqLw4sULPHnyBE+ePMHjx4/x7NkzZGYWnlDr4OCA5s2bo3nz5mjdujXc3d0rZFBNFfk875pTacjMzER4eDjCwsJkUnh4OCIjIxEfHy/3MokIubm5yM3NLVJAykJ6ejqePXuG9evXY8+ePTA1NYWZmZmwzU8Fo4zlHzcwMFCq5wMRISUlRYiWFhMTg4iICLx69UpIERERhWbk5WNnZ4cGDRrA09MTzZs3R7NmzSrFDMuKgoswR+mkp6fj5cuXhVJISEihgOIfoqamhmrVqsHW1hZ2dnawtbWFtbW1IGD5yczMDEZGRtDQ0ICamhrU1NQE/2zGGDIyMpCQkICgoCA8e/YMr169QlRUFBITEwtNUhGJRMjKyoK+vj50dHQEf25dXV1oa2uDiJCWloa0tDSkpqYKr/PjK3zqnj5EXV0dJiYmMDExgampKUxMTGBkZAR9fX3o6+vDwMBAeK2npye03PNT/qQdiUSC3NxcYZZl/uusrCykpqYiJSVFJuVPNY6JifmknzcA2NrawtnZGQ0aNEDDhg3RoEED1K9fH6ampqW6388NLsKcCiErKwuhoaEICQlBSEgIgoODhdf5qz4UhYaGBuzt7YXVEwome3t7WFtby6XvUE9PDxYWFqhTpw569+79yfNL6yuaL8z5cTzev38vxPVITEwUVpn4cPWJpKQk4Q8iISGh7DdYTgwMDGQC+Njb28PJyQlOTk5wdnZGzZo1oaurqzT7KjNchDlyIzMzE69evRJasSEhIcLrqKiofHfGQmhqasLJyQm1atWCi4uLsHVxcYG9vX2V6CtkjAnBj0o7my4nJwfJyclISkrC+/fvkZSUhJSUFKSnpxeZ8rtSxGKx8FokEkFNTU1oJRfcamtrw8jIqMiUL7pVbcqzKlH5v92cCoOI8O7dO6FfNj80YX4Am489ZmtoaMDBwQG1a9cWVmrIT/b29p/NSHhZyI9XoQqrgnDkDxdhjgARISEhARERETKp4IDYxxZk1NDQgKOjI5ydnWVE1sXFpdwLMHI4VZWSrjF3C8D/ABwiomzFmsRRBBKJBO/evcPbt2/x5s0bREVFCasQREVFITIyEq9fvy42elg+xsbGcHR0hJOTExwdHWWC19SoUaNKdB1wOBVJSX8xOQB2AVjHGNsF4C8+OUP55OTkID4+HvHx8Xj37p3wOj4+HjExMYiOjha2sbGxJQo5aWxsjJo1awqp4KCYk5MTH+nmcORMiUSYiLwYY64AxgL4FsD3jDFfSFvHx4io+JXzODKIxWKZ5WAKvs6fRJDvIpT/On9A5sNR9Q9nHX0KMzMzVKtWDTVq1BBcuvLduuzs7GBvb19lZ25xOKpKiZ8d81q+0xljcyFd0mgspKtsvGOM7YC0dfxKMWaqHqdPn8aCBQuQkpICPT29QgHcc3NzBZ/SgosUliYA+qfQ0NCAhYUFLC0thW3+axsbG1SrVk3YWltbQ1tbW25lczgc+VDqDry8PuE9jLGnANYAaAdgFoAfGWPHAUwhohj5mql6vH//Ho8ePSr1dYwxmWXCCy4bnr9224dbY2NjmUkH+a8NDQ2rbAxZDudzoVQizBjTBTAI0vCWHgBeAPgewGEAXwJYBOAfAB3laqUK0qNHDzx48AD+/v5o3ry5MAsrfwZWUUsK5ftmcuHkcDj5lNQ7oiGAcQCGANAHcBLAbCK6WuC0rYyxGEgFucpjbm4Oc3NzJCcno2HDhso2h8PhVFJK2hIOAPAW0oU+/yKi6GLOewngthzs4nA4nM+CkorwNwBOEtFHR5WIKAiAd7mt4nA4nM+EkrqoHVO0IRwOh/M5UtI+4QUfOSwBkAzgARHdlItVHA6H85lQ0u6IRZAuuFfUsH7+fmKM3QbQg4iS5WMeh8PhVG3USnheXUgH3WYAqAnpGnM1AczM298KwIC885bJ30wOh8OpmpRUhDcD+JuI1hJRJBHl5G1/B/A3gKVEdATASgBfKcrYksAYq8EYO8IYS2aMpTDGjjHGShfAlcPhcCqIkopwSwD+xRx7AOkqzADgB0Bpi0cxxvQAXAHgCmA4gGEAagG4yhjTV5ZdHA6HUxwl7RNOhnQW3H9FHOuUdxyQdlOkyMGusjIGgBOAOkT0EgAYY4EAQiCdbLJGibZxOBxOIUoqwtsBzGWMGQI4AiAO0hZvP0inMC/PO685gCfyNrIUfAXgTr4AAwARhTHGbgLoBS7CHA5HxSipCOe7qH0PYGLeawYgHVIBzj9+FsBBuVlXeupDOqX6Q55C+ofB4RRCIpEgLi4OkZGRiIqKQkxMDGJjYxEXF4eUlBTk5OQgOzsbqampSE5OFrbVqlUTQoBaWFjA3NwcFhYWMDMzg6WlJaysrGBpackXwOR8lJJO1pAAmM8YWw2gIYBqAKIBPCaipALn3VOEkaXADMD7IvYnAigyGjljbCykYTlhbW2Na9eularAtLS0Ul/DqRgkEgliY2Px/PlzhIaGCkvYJyUlIS0tDZmZmcjJyYFEIilT/nFxcQgICPjkeTo6OjAxMYG5uTmqVasmk6pXrw5zc3O+xl4lQt6/+U+KMGNMC0AMgBFEdAqAr9xKVwGI6C8AfwGAp6cnlWYZc6D0S59z5Mvbt29x48YN+Pv74+nTpwgPDxdasNnZpVuJS01NDerq6iAi5ObmFjquoaEBHR0d6OnpgYiQk5ODtLS0T8aIzsrKQkxMDGJiYvD06dNCx7W0tODq6oqGDRuiQYMGwtbe3p5H3FNB5P2b/6QIE1EOYywXQJbcSlUc71F0i7e4FjKnEhAaGgofHx/cv38fQUFBiIiIQFxcHDIyMkBEn7w+f0l3c3Nz2NjYoHr16qhZsyacnZ3h6uoKfX19HDlyBDt37hRWjFZTU0P37t3Rv39/1K1bFy4uLjAxMRHyLPhDjIuLw8OHD/Hw4UNcv34dFy5cACCNHa2mpiYj0lpaWqhduzYsLCyQlZWFsLAwxMbGIjAwEIGBgTJ2GxkZwc3NDc2aNUPTpk3RrFkz1KxZkwtzFaOkfcInIA3ic0lxpsiFp5D2C39IPQDPKtgWTimIiIjAtWvXcO/ePTx79gzh4eGIj48vkdBqaWnBxMQE1apVg5OTE1xdXdG4cWNBtNTUivbEjIqKwsKFC7Fz506hS8LFxQWjRo3C8OHDUb169RLZbmVlha5du6Jr166YM2cOnjx5gqVLl+LgwYMQi8VQV1eHu7s7xGIxHjx4gCdPpGPXFhYWGDBgAL7++mvo6enhyZMnQnr8+DHi4+Ph4+MDHx8foSxLS0s0bdoUzZs3R7t27dC8eXPe51zZIaJPJgBfA4iE1DNiKKTuah0KppLko+gE4AcAuQCcCuxzACACMONT13t4eFBpuXr1aqmv+VwJDw+nXbt20eTJk6lDhw7k5OREBgYGxBgjSKe/F5t0dXXJ1taWWrRoQSNGjKANGzaQv78/iUSiUtuRmJhIs2bNIh0dHQJAGhoaNHToULp27RpJJJIS5VGSeg8KCqKhQ4eSmpoaASBNTU2aNm0aLV68mFxdXWXur1GjRrRt2zbKyMgQro+JiaEzZ87QwoULqVu3bmRubl7oc9HU1KTWrVvT3Llz6fz585ScnFzqz4NTOsrymwfgR8XpVnEHSFbcJMUkcf62JPkoOkEacP4lgMeQuqR9BWks5FcADD51PRfh8iESiej+/fu0ceNGGj16NLVp04Zq1qxJ+vr6JRJaHR0dql69OjVv3pyGDx9OGzZsoIcPH5JYLJaLfZmZmbRq1SoyNTUVyuzfvz8FBweXOq/S1HtISAh9++23QpkNGzake/fukb+/P02fPp2srKyEY+bm5jR37lx6/fp1oXwkEgmFhobS/v37acqUKeTm5lboc1VTU6MWLVrQzz//TD4+PpSTk1Pqe+N8HGWJcPtPpZLkUxEJgD2Ao5BOGkmFtCvFoSTXchH+OGKxmAICAmj79u00bdo06t69O9WvX5/Mzc1JU1PzkyJbUGibNWtG3377La1du5bu379fphZtSZFIJHTo0CGqUaOGYIe3tzfdu3evzHmWpd6vXLlCzs7OgljOnDmTMjIyKCsri3bv3k0eHh6Cferq6tSvXz+6devWR/N8//49nTlzhmbNmkUtWrQgDQ0Nmc/b0NCQvvzyS9qwYUOZ/mw4hVGKCH8u6XMWYbFYTK9evaIjR47Q4sWLadiwYdSuXTuqVasWmZqallhkGWOkr69PNWvWpLZt29J3331HmzdvlmuLtjS8evWKunXrJtjXuHFjunDhQom7HYqjrPWenp5O06dPF7ooXFxc6Nq1a0Qk/bO4desWDRw4UEZM27VrV2KbU1JS6PTp0zR16lSqW7duofqpU6cOzZgxg65evcpbyWVEqSIMwAJAT0jjMpjl7dMBoFaafFQ1VUURfv/+Pd25c4f27NlDS5YsodGjR1OXLl2oUaNGZGtrS0ZGRoVaT58SWV1dXapWrRq5ublRnz59aP78+XTs2DGKjo5W9u0K5OTk0MqVK0lXV5cAkImJCW3ZskVufwTlrfc7d+5Q/fr1hc/1hx9+oKysLOF4VFQUzZ07l4yNjYVzmjRpQgcPHqTc3NwSlxMZGUnbt2+ngQMHynTD5H8mAwcOpH/++YeSkpLKdT+fE/IWYSY9/nGY1CfmNwBTAGjlVWJTInrAGLsI4AYRLflkRiqOp6cn+fn5leqaivATlkgkePfuHaKiovD27VuZGV1xcXGIj4/H+/fvhUkIGRkZyM7OhkgkKnVZWlpaMDAwENy5atSogTp16giuUjY2Ngq4Q/ly584djB07Fo8fPwYADB48GGvWrIG1tbXcypBHvWdnZ2PZsmVYunQpxGIx3NzcsH//fri6ugrnJCcn488//8TatWsRGxsLAKhVqxZmz56NYcOGQUtLq8Tl5ebm4tatWzh9+jTOnDmD58+fC8e0tLTQuXNn9O3bF7169YKZmVm57q0qU5a6Z4z5E5FnkcdKKMLzAPwMYAmAywDuAvDME+HJAIYRUfNSWaWClEaEHzx4gIsXL+Lly5ewt7cHEUEsFgtJJBIhOzsbOTk5Mik7OxtZWVnIzMwUXufvz08ikQgikQhisRgSiQQlqaOPoaamBi0tLejp6cHY2BgWFhaoXr06atSoAWdnZ9SpUwcNGzaEnZ1ducpRNmlpaZgzZw7++OMPEBEcHR3xv//9D127dpV7WfL887179y4GDx6MV69eQVdXF+vXr8d3330n4w+cmZmJnTt3YtWqVQgLCwMA1KxZE3PnzsXIkSNLJcb5vHz5EmfOnMHx48fh6+srfM80NDTg7e2Nvn37om/fvrCwsJDLfVYV5C3CJe2GeAVgbt5rdUg9Itzz3n8B4F1J8lH1VJruiNGjR5f4EV5eSU1NjTQ1NUlfX5/MzMzI1taW6tatSy1btqSePXvSyJEjad68ebR582a6cOECvXr1Sin9sMrg6tWr5OjoSMhzOZs7dy6lp6crtDx5kpycTMOGDRPqum/fvpSQkFDoPJFIRHv37pXp761RowZt3rxZpjujtMTExNCff/5JnTt3JnV1dZkBwm7dutHu3bspJSWlPLdYZVBWd0Q2gC+I6CpjTB1Sv9v8lnAHAGeJqNJ7jJemJbxixQqsWrUKubm50NLSAmNMmCEFAOrq6lBXV4eGhoaw1dDQgKamJnR0dKCrqytMgc1PJiYmMDU1hZmZmRAExtLSEtbW1jKztTj/T3p6OubMmYNNmzYBANzc3LBr1y40atRIoeUqqhvqn3/+wYQJE5Camgo7Ozv8888/aNeuXaHzxGIxjh49il9++UWYCm1ra4vZs2djzJgx0NHRKbMNCQkJOHXqFA4fPoxLly4JM/50dHTw5ZdfYtCgQejWrVu5yqjMKLMlPIWKbglPA/CsJPmoeqqKA3NVmevXr5OTk5PQ+l28eHGFjfgrst5DQ0OpefPmwtPPkiVLih2ME4vFdOTIEWrUqJHQeq1evTpt2LCBMjMzy21LXFwc/fHHH9S2bdtCg3rjx4+nW7duldvTpLKhLD/hlQDiAbQuIMJNANQGEAVgQUnyUfXERbhykJ6eTt9//70wUaFRo0b08OHDCrVB0fWek5ND8+bNE+6xY8eOH/U+EYvFdPz4cXJzc1OIGBMRRURE0G+//SZTBgCqXbs2/frrrxQeHi6XclQdZYmwLqTR08R5rWIJpDPTsgFcBaBVknxUPXERVn3u3btHderUEforFyxYQNnZ2RVuR0XV+8WLF4UZddbW1nT58uWPni+RSBQuxkREgYGB9OOPP5KNjY2MIHt7e9OePXtkpl9XNZTmJ5zXAh4GYC+kgXz2Q+ovrFHSPFQ9cRFWXXJycmjhwoXCoFG9evXIz89PafZUZL2/ffuWvL29BT/t+fPnf3KGYVFiXK1aNVq3bp1cBVIkEtG5c+do4MCBQiwOAGRsbEwTJkyg+/fvV7nuCj5jjovwZ0dQUBB5enoKIjR9+nS5turKQkXXe25uLi1evFiYade2bVuKjIz85HVFibG1tTX9/vvvlJaWJlcb379/T3/++Sc1bdpUpnXcqFEjWr9+Pb17906u5SkLLsJchD8bxGIxrV+/Xmhh2dvbq8znrSw7rl69StWqVSNAGuzn7NmzJbpOIpHQyZMnZeJTWFpa0m+//UapqalytzMwMJB++OEHmchv2traNGjQILpy5Uqlbh0rq09YC8BCAM8BZOT1DRdMuSXJR9UTF2HVITIykjp16iT8gEeMGKFSU2uVWe+xsbHUtWtX4bOZOXNmib1CJBIJnTlzhpo1ayZcb25uTkuWLKH379/L3dasrCw6fPgwde3aVSbim4uLC61YsYJiYmLkXqaiUZYIr4c0Tu9pAMvyBFkmlSQfVU9chFWDAwcOkImJCQEgCwsLOnbsmLJNKoSy610sFtPy5cuFPvIWLVqUyjtBIpHQhQsXqGXLloIwGhoa0pw5cxQmjOHh4bRgwQKys7MTytTQ0KCvv/6azp8/X6qYGMpEWSL8BsBPJTm3Micuwsrl/fv3NHjwYOEH2qNHD5UKClQQVan3GzduCKJmYmJCx48fL9X1EomErly5IvPUoaOjQ5MnT6aIiAiF2Jybm0tnzpyhXr16yczOs7e3p8WLF5eor1uZKEuEk6Eiq2coMnERVh7//fefICZ6enq0ZcsWle43VKV6f/fuHfXs2VMQsylTppRp4PLOnTvUq1cvmVbqsGHDKCAgQAFWS3n79i0tXbpUmHKOvAkqPXr0oBMnTig0znRZUZYI7wWwqCTnVubERbjiyczMpOnTpws/wObNm1eK4OOqVu8SiYR+//13Ie6zm5sbPX/+vEx5BQYG0uDBgwVPDADUtWtXunz5ssL+GMViMV2+fJn69esnE7u6WrVqNGfOHAoJCVFIuWVBWSLcHMALAAsAeAJw+jCVJB9VT1yEK5aHDx8KMXXV1dXpl19+UcmWT1Goar3fu3dPmMqtr69PO3fuLLNwvnr1iqZMmUJ6enqCKLq5udHevXsVOj08NjaWVq1aJUzKyU9eXl60d+9epU8EUYU15j70jBBDRdaYK2/iIlwx5Obm0vLly4UWT+3atcu11JAyUOV6T05OlulbHzp0aLkioCUkJNDSpUvJ2tpayNPW1paWLFlCsbGxcrRcFolEQr6+vjRixAghOH9+3/eECRPo3r17SumyUpYIj4B0dlyxqST5qHriIqx4QkNDqXXr1sIPavLkyQoNOakoVL3eJRIJ7dixQ2jFuri40P3798uVZ2ZmJm3btk0mjKaWlhYNHTqU7t69KyfLiyYpKanIiSD169enVatWVegALp+swUW4UiKRSGjbtm1kYGAg9PVduHBB2WaVmcpS70FBQUKENU1NTVq5cmW5Y0xLJBK6dOkSffnllzK+v82aNaPdu3crvLsgICCApk2bRpaWlkLZ6urq1LNnTzp8+LDCZ1OqnAgDUEPeenOVPXERVgzR0dEyo/f9+vWr9FNYK1O9Z2Zm0pQpU4TP39vbW25uYK9evaIff/xRZv06ExMTmjRpEj148EAuZRRHTk4OnThxgnr37i2zTqKxsTGNGjWKrly5opBFDSpMhAEkIi9mcN57BuDUh4NweYN2vE+YUySHDx8Wpq4aGxvTnj17VNr1rKRUxno/e/asEJHN1NSUjhw5Ire809PT6a+//hJifOQnd3d32rx5s0Jm4xUkNjaW1q5dKzMtO7/veubMmfTo0SO5fe8qUoQlAJoVeC8TzL3Afi7CnEIkJibKDA517txZ5Z3wS0NlrffY2Fjq3r27UC+jR4+We+yIR48e0ZQpU2Raxzo6OtS/f386duyYwrsLgoKCaP78+eTg4CAjyHXq1KH58+dTQEBAuQSZizAXYZXnwoULVL16dWHixR9//FElWr8Fqcz1LpFIaNOmTUJgJBcXF7p9+7bcy8nMzKR9+/ZRhw4dZMTQyMiIhg8fThcuXFCoS6JEIqEbN27Q+PHjZQIJFRTkwMDAUn83uQhzEVZZUlJSaNy4ccIXvWXLlpVi4kVZqAr1/uTJE2rYsKEwS+2nn35SWID88PBw+u2336hJkyYyYmhhYUFjxoyhkydPyj20ZkFEIhFdvnyZxowZU0iQnZ2dadq0aXT16tUS/SlwEeYirJL8999/VLNmTWEUfvny5ZUmIEtZqCr1npWVRbNmzRK8HJo0aUJPnjxRaJnPnz+nRYsWFZqMoa2tTd26daPNmzcrdKkkkUhEly5dojFjxpCFhYWMDaampjRkyBA6dOhQsVH7KlqEv8b/z4qrlbfvS8jOluvLRfjzJTU1lSZOnCgzEBMYGKhssxROVat3Hx8fIX6DtrY2rV69WiGeBQWRSCT08OFD+uWXX2RCa+an+vXr08SJE2n//v0UFRWlEBtyc3PJ19eXZs6cWehPQV1dnVq3bk2LFy+m27dvC63kihbhD2fGFbuvuHwqU+IiXDquXbsm/HA1NTVpyZIlFbbasbKpivWekpJCY8aMEUSoffv29OrVqworPyYmhrZv3059+/YV/MkLJicnJxoxYgT9/fff9ODBA4UM8D1//pxWrVpFbdu2lYnwlt+X3apVK2rZsiU9e/asVPl+TISZ9HhhGGPDizxQDES0qzTnqyKenp7k5+dXqmuuXbsGLy8vxRikoqSlpWHevHnYuHEjAMDNzQ07d+5E48aNlWxZxVGV6/3MmTP47rvvEBsbC319faxcuRITJkyAmppahdmQnZ2Ne/fuwdfXF76+vrh58yZSU1NlzlFTU0OtWrXQoEEDIbm4uMDGxgaWlpZQV1cvU9lZWVmIiYnBvXv3cOLECdy+fRuRkZEQi8XCOT///DN++eWXEufJGPMnIs8ijxUnwp8jXIQ/zeXLlzF27FiEh4dDQ0MDP/30E+bNmwctLS1lm1ahVPV6f/fuHSZPnoyDBw8CANq3b4+///4bzs7OSrEnNzcXgYGB8PX1xa1bt/D48WMEBwfLCGNB1NXVYWVlhWrVqqFatWqwsLCAuro61NTUZBIRISEhATExMYiNjUVMTAySk5OLzFNfXx/Vq1dHZmYmDh48iFatWpXY/o+JsNK7AFQp8e6I4nn//j2NGjVKeDRzc3NT+IwoVeZzqfejR48KEzz09PRo/fr1Cu8rLimZmZn06NEj2rNnD82ePZu6d+9ODRo0KOT9UNqkqalJdnZ21L59e5oxYwbt27ePXrx4Idy3vPuENUos5ZzPlpMnT2LChAmIjo6GtrY2Fi5ciB9//BGamprKNo2jYPr06YP27dtj6tSp2LdvH77//nscPnwY27dvR61atZRqm46ODho3blxkN1hOTg5iY2MRHR2N6OhoJCYmQiKRFEpEBHNzc1hbW8PGxgY2NjYwNTUFY6zC7oOLMKdYYmNj8f333wuPpK1atcLff/8NV1dXJVvGqUjMzc3xzz//oH///hg/fjxu3LiBRo0aYcGCBSr7Z6ylpYUaNWqgRo0ayjblk1RcT3sFwBgLZ4xREam3sm2rTEgkEmzbtg1169bFwYMHoaenh/Xr18PHx4cL8GdMr1698PTpUwwfPhxZWVmYN28ePDw8cPfuXWWbVqmpUiKcx0UALT9I15VqUSUiKCgIXl5eGDNmDN6/f4+uXbviyZMnmDp1aplHmzlVBzMzM+zcuROXL1+Gk5MTHj9+jJYtW2Lq1KmFvBc4JaMqivA7IrrzQXqvbKNUnezsbCxatAiNGzeGr68vrKyssG/fPpw/fx6Ojo7KNo+jYnTq1AmPHz/G7Nmzoaamho0bN6JevXo4deqUsk2rdFRFEeaUkqtXr6Jx48ZYvHgxRCIRvvvuOwQFBWHQoEEVOkDBqVzo6elhxYoV8Pf3R9OmTREVFYVevXqhV69eCA8PV7Z5lYaqKMJfMsYyGGPZjLE7vD+4eN6+fYvBgwejQ4cOePHiBVxdXXH9+nVs3boVZmZmyjaPU0lo3Lgxbt++jXXr1sHQ0BCnTp1CvXr1sHTpUmRnZyvbPJWnqonwaQBTAHQFMARAFoDjjLGhSrVKxRCJRFizZg3q1KmD/fv3Q1dXF0uWLMGjR4/Qrl07ZZvHqYSoq6vj+++/x/PnzzFo0CBkZmZi/vz5aNiwIS5duqRs81QalZ0xxxjrBOByCU69TkRexeShDuAOABsiKtJXhTE2FsBYALC2tvY4cOBAqexMS0uDgYFBqa5RJo8ePcL69euFx8U2bdpg0qRJsLGxUa5hlYzKVu8VzYMHD7B+/Xq8fv0agHTG3cSJE2FlZaVky8pPWere29u78s2YA6AHwLUEyf4T+cyCdCZMtU+VWZVnzL1+/VpmpQsnJyc6c+aMss2qtFSWelcm2dnZtGLFCmHFZ11dXVq4cGGlXF27IPKeMaey3RFElEFEz0uQXpc0S4UarKKkp6dj4cKFqFOnDvbt2wcdHR0sXrwYT58+RY8ePZRtHqcKo6WlhdmzZyMoKAj9+/dHZmYmFi9eLHwXSUWfwisalRVhecAY0wAwAMBrIopRtj0ViUQiwZ49e1C7dm388ssvyMzMRL9+/fDs2TMsWLAAOjo6yjaR85lgb2+PgwcPwsfHB+7u7oiKisKQIUPQunVr3L9/X9nmKZ0qI8KMsUGMsQOMsW8ZY96MsYEArgJwBzBbyeZVKDdv3kTz5s3x7bff4u3bt/Dw8ICPjw8OHTrEfX45SqNt27a4d+8e/v77b1hZWeH27dto1qwZvv32W0RERCjbPKVRZUQYQBgAKwCrAFwC8CeAbABfEFHpRtsqKU+fPkXv3r3Rpk0b+Pn5oVq1ati5cyfu3buHtm3bKts8Dgfq6uoYNWoUQkJCMGvWLGhpaWHPnj2oU6cOZs6ciffvP795VVVGhEk6M64DEVkTkSYRmRBRJyK6qGzbFE14eDiGDx+Ohg0b4uTJk9DT08P8+fMRHByM4cOHV2gwbg6nJBgZGWHlypXCpKDs7GysXr0aTk5OWLVqFbKyspRtYoXBf52VmNjYWEydOhW1a9fG7t27oa6ujkmTJiE0NBRLlizhLlQclcfJyQn79u2Dn58fOnTogKSkJMyaNQu1a9fGrl27ig3aXpXgIlwJiY2NxZw5c+Ds7IyNGzciNzcXQ4cOxYsXL7Bp0ybu88updHh4eODff//F+fPn0ahRI0RGRmLEiBFo2LAhDh06BIlEomwTFQYX4UrE69evMWXKFDg4OGDlypVIT0/Hl19+iYCAAOzZswdOTk7KNpHDKTOMMXzxxRd48OABdu7cCQcHBwQFBWHAgAFo0qQJTp48WSXd2rgIVwKCg4MxevRoODs7Y9OmTcjKykKvXr1w9+5dnDp1Cg0bNlS2iRyO3FBXV8fw4cPx4sUL/Pnnn7Czs0NgYCB69+6NZs2a4fz581VKjLkIqyhEhOvXr6Nfv36oW7cutm/fDolEgsGDB+Px48c4ceIEmjVrpmwzORyFoaWlhXHjxiEkJATr16+HtbU1/Pz80L17d7Ro0QKnTp2qEmLMRVjFSE5OxqZNm9CgQQN4eXnhyJEjUFdXx5gxYxAcHIx//vkHDRo0ULaZHE6FoaOjg6lTp+LVq1dYtWoVLCwscO/ePfTq1QuNGzfGwYMHK/UAHhdhFSEgIADjx4+Hra0tpkyZgmfPnqFatWpYuHAhwsLC8NdffyltuXEORxXQ09PDjz/+iPDwcKxduxbVq1fH48ePMXDgQNSrVw87duyASCRStpmlhouwkiAiBAQEYMGCBahXrx7c3NywZcsWpKenw9vbG4cPH0ZERAQWLVoEW1tbZZvL4agM+vr6+OGHH/Dq1Sts2bIFjo6OCA4OxqhRo+Ds7IzVq1cjOTlZ2WaWGC7CFYhEIoG/vz/mzp2L2rVrw83NDUuWLEFQUBDMzMyEFvCVK1fwzTffqOQqthyOqqCtrY2xY8ciODgYu3fvRt26dREZGYmZM2eiRo0amDFjhhBKU5XhS94rkPj4eNy7dw93797F3bt3ce/ePSQlJQnHLS0t0adPH3zzzTdo3749F10OpwxoaGhg2LBhGDJkCM6dO4fff/8d165dw5o1a7B+/Xr069cPM2bMgKdn0eF8lQ0X4TISFxeHoKAg+Pj4IDg4GAkJCUJ69+4dnj59irCwsELX2draonfv3vjmm2/Qtm1bvoIxhyMn1NTU0LNnT/Ts2RP+/v5Ys2YNDh48iAMHDuDAgQNo0aIFJk2ahH79+kFbW1vZ5v4/xQUa/hxTaYK6//XXX0KA9OKSnp4etWvXjmbOnElHjhyh169fk0QiKXEZHNWFB3WvHERERNCMGTPI2NhY+F1aWlrS3LlzKSIiokx5yjuou8oub6QMPD09yc/Pr0Tn/vfff1i0aBGICK6urjA3NxeShYUFHBwcUL9+fWho8IeNqsi1a9fg5eWlbDM4JSQ9PR379u3D5s2bERAQAEDacv7qq68wduxYdOnSpcRPpWWpe8ZY5VveSBmpKi9vxJEvvN4rJxKJhG7cuEEDBw4kDQ0NoXVsZ2dH8+fPp1evXn0yj89meSMOh8ORN4wxtG7dGvv370dkZCR+/fVXODk5ISoqSnjdsWNH7Nu3r8LCaXIR5nA4nyU2Njb46aefEBISgitXrmDIkCHQ0dERXtvY2GD06NG4cuWKQmfkcRHmcDifNWpqavD29sbevXsRHR2NP/74Ax4eHkhOTsb27dvRsWNH2NvbY8aMGXjw4AGys7PlW75cc+NwOJxKjImJCSZMmAA/Pz88e/YM8+fPh6OjI96+fYs1a9bAw8MD3bp1w759++RWJhdhDofDKYK6deuiX79+6NOnD8zNzYX9RISQkBC5lcP9pzgcDqcA79+/x65du7Bz507BnQ0AXFxcMGTIEOTk5GDBggVyK4+LMIfD4QB48OABNm/ejP379yMzMxMAYGpqioEDB+Lbb79F8+bNwRjDtWvXwBiTW7lchDkczmdLVlYWDh8+jM2bN+Pu3bvC/s6dO2PcuHHo2bOnwqc4cxHmcDifHbGxsdi0aRP+/PNPvHv3DgBgbGyMkSNHYsKECahdu3aF2cJFmMPhfDY8e/YMa9aswd69ewVXsyZNmmDSpEkYOHAg9PX1K9wmLsIcDqdKQ0S4du0afv/9d5w9exaAdOZcr169MGPGDLRp00aufbylhYswh8OpkkgkEhw/fhwrVqxAfmAuHR0djBgxAtOmTavQLoePwUWYw+FUKUQiEf755x+sXLkSz58/ByBdQGHy5MmYMGECLC0tlWyhLFyEORxOlSAjIwPbtm3D6tWrERkZCQCwt7fHzJkzMWrUKOjp6SnZwqLhIszhcCo1ycnJ+OOPP7B27VrEx8cDkM52mzNnDgYNGqTyy4ZxEeZwOJWShIQErF+/Hhs2bBBWV27atCnmzZuHr776CmpqlSMqAxdhDodTqYiOjsbvv/+OP//8E+np6QCA9u3b46effkKnTp2U6ulQFrgIczicSkF4eDhWrVqFv//+W/Dx7datG3766Se0bt1aydaVHS7CHA5HpQkKCsKKFSvwzz//CMHV+/Tpg3nz5sHDw0PJ1pUfLsIcDkcl8ff3x/Lly3Hs2DEQEdTV1TFs2DDMmTMH9erVU7Z5cqNS9FwzxqYzxk4zxqIZY8QYW/SRc3szxh4yxrIYYxGMsfmMsZIto8rhcJQKEeHKlSvo2rUrPD09cfToUWhpaWHChAkICQnB7t27q5QAA5WnJTwGQAqAEwDGF3cSY6wrgKMA/gYwHUATAMsAGAKYLU+DQkND4evri4iICIhEIhgaGsLQ0BBGRkbCtrKMznI4ykYsFuPEiRNYuXIl7t+/DwDQ19fHhAkTMH36dFSrVk3JFiqOyiLC9YlIwhjTwEdEGMAKADeIaGze+6uMMQMA8xlja4koRl4G3bx5EyNHjiz2uI6ODlxcXFCrVi3UqlULtWvXRq1ateDq6gorKyt5mcHhVGqys7Oxe/durF69GsHBwQAACwsLTJ06FZMmTYKZmZmSLVQ8lUKEiUjyqXMYYzUAuAEY+8GhPQAWA+gGYIe8bHJwcMC3336LV69eQVtbG6mpqUhJSZHZPnnyBE+ePCl0bY0aNdC8eXM0b94czZo1g4eHh1KiN3E4yiIhIQFbtmzBxo0bERMjbRs5ODjgxx9/xMiRI1V2dpsiqBQiXELq521lVI+IwhhjGQDk2pHUrl07tGvXDteuXYOXl1eh48nJyXj58iWCg4MREhIipGfPniEyMhKRkZE4cuQIAOlqrw0aNEC7du3g7e2N9u3by6xpxeFUFYKDg7Fu3Trs3LlTWL2iUaNGmD17Nvr37w8NjaokSSWjKt1x/nPL+yKOvS9wvEIwNjaGh4dHIRcasViM58+f4969e7h79y7u3r2Lx48fIzAwEIGBgdi0aRMYY2jcuDG8vb3h7e2Ndu3awdjYuCLN53DkBhHBx8cHa9aswenTp0FEAKQ+vtOnT0fHjh0r3QQLecLyP5AKK5CxTgAul+DU60Tk9cG1GgBEABYT0aIPjg0G8A+AukT0/INjUQAuEtHoIuwZi7wuDGtra48DBw6U/GYApKWlwcDAoFTXfEhWVhZevHiBR48e4dGjR3j69ClEIpFwXE1NDfXq1UPTpk3h6emJOnXqQF2dO3woE3nUe1UnKysL//33H44fP47Q0FAAgKamJrp06YK+ffvC0dFRyRaWjbLUvbe3tz8ReRZ5kIgqNAHQA+BagmRfxLUaAAjAoiKOdcs71rKIY+kAVn3KNg8PDyotV69eLfU1nyIjI4P+++8/mj9/PrVq1YrU1dUp794IAJmamlK/fv1o69at9Pr1a7mXz/k0iqj3qsLLly9pxowZZGJiInxnraysaNGiRRQbG6ts88pNWeoegB8VozsV3h1BRBkAnn/yxNLzNG9bH8Dt/J2MMQdIhf+ZAspUCLq6uujQoQM6dOiAJUuWIDk5GVevXsWlS5dw6dIlhIaG4vDhwzh8+DAAoH79+vjiiy/wxRdfoG3btgpfmJDD+RCxWIwLFy7gf//7H86dOyd0ObRo0QKTJ0/GN998w7+XxVBl+oSJ6DVjLADAEADbChwaCmkXxnmlGCYHjI2N0bt3b/Tu3RuA1Ef50qVLuHjxIv777z88ffoUT58+xe+//w49PT14e3vjiy++QNeuXeHi4vJZ97dxFEtERAS2b9+O7du3IyoqCgCgra2NgQMHYvLkyfD0LPoJnPP/VAoRZox5AnDA/8/wq8cY+ybv9bm81jUAzANwhjG2BcB+SCdrzAewnuToI6xsnJ2dMWHCBEyYMAE5OTm4desWLly4gAsXLiAgIABnz54V1tJydHRE165d0bVrV3To0AFGRkZKtp5T2RGJRDh9+jS2bt2KixcvCq1eZ2dnfPfddxg9erTKrV6h0hTXT6FKCcBOFOgT/SA5fHBuHwABALIBvAawAIB6ScpRlT7h8vDmzRvavn07DRgwgMzMzGQ+Kw0NDWrTpg0tXryYbt68SSKRSNnmVlpUrd4VjUQiofv379PUqVPJ0tJS+E5paWnRoEGD6MqVKyQWi5VtZoUg7z5hpQusKqWqIMIFyc3Npbt379Ivv/xCrVu3LjTAZ2RkRL169aKNGzdSUFAQSSQSZZtcaVDlepcn4eHhtHTpUnJ1dZX57tSrV4/Wrl1L7969U7aJFU6lH5jjVBzq6upo1qwZmjVrhp9//hlJSUm4du0aLl++jH///RfBwcE4efIkTp48CQCoVq2a4Jvs7e0NJycn3p/8GRITE4Pjx4/jwIED8PHxEfZbWlpi0KBBGDZsGDw8PPh3Q05wEf6MMDExkRngi4iIwL///ot///0X//33H6Kjo7Fv3z7s27cPgHSRxPzJIm3btuWDfFWYN2/e4NixYzhy5Ah8fX3zu/ago6OD3r17Y9iwYejcubPKr9dWGeEi/BlTs2ZNjB49GqNHjwYR4enTp7h69SquXr2K69ev4/Xr19i1axd27doFALC2tkbbtm3Rpk0btG3bFo0bN+aTRiopRITnz5/jzJkzOHHiBG7duiUc09LSwhdffIG+ffuid+/efDBXwXAR5gAAGGNo0KABGjRogClTpkAikSAwMBDXrl2Dr68vfH19ERsbiyNHjggxLwwMDNC0aVO0aNECLVq0QPPmzWFtba3kO+EUR1ZWFq5duyZ4z4SFhQnHdHR00K1bN3zzzTfo2bMnF94KhIswp0jU1NTg5uYGNzc3/PDDDyAiBAcHC4Ls6+uLsLAwoeWcj6OjI5o3by7EzXB3d+dxL5SERCLB48ePcfXqVfz333+4cuUKMjIyhOMWFhbo1q0bevbsie7du/Np2EqCizCnRDDGUKdOHdSpUwffffcdAOkATn4Qojt37uDevXsICwtDWFgYCsbgcHZ2FkS5cePGaNiwIapVq8b7l+VMfhdD/h/j1atXkZCQIHOOm5sbevbsiR49eqBp06a8O0kF4CLMKTM2Njbo1asXevXqBUA6dfXp06e4d+8e/P394e/vj8DAQISGhiI0NBSHDh0SrjU3N0fDhg2F1KBBA7i6usLU1FRZt1PpSEpKwr1793Dnzh3cuXMHd+/eRWJiosw5dnZ2whT4Tp06wdbWVknWcoqDizBHbqirq6NRo0Zo1KiR0FoWiUR49uyZIMr5YTsTEhJw7do1XLt2TSYPS0tLuLq6ok6dOsLWyckJjo6O0NXVVcJdKR8iQmxsrBDuNDAwEH5+fggKCip0ro2NDby8vNChQwd4e3vD2dmZP3GoOFyEOQpFU1MTjRs3RuPGjTFq1CgAUlGJiorC48ePhRQUFITnz58jPj4e8fHx8PX1LZSXjY0NnJycBFG2t7eHnZ0dbG1tYWdnBxMTk0otOCKRCOHh4QgNDcXLly8REhKCp0+fIjAwEPHx8YXO19LSgoeHhzAw2qJFC9SoUaNSfwafI1yEORUOYww1atRAjRo10L17d2E/EeHNmzd4/vw5Xrx4gefPnyM4OBhhYWEIDw9HTEwMYmJiZNypCqKnpwdbW1tUr14dVlZWsLS0LLQ1MTGBsbExTExMKnQx1qysLLx79w5v374tlKKiohAaGoqIiAiIxeIirzc2NhaeMho1agQ3Nzc0btyYRyarAnAR5qgMjDHY2dnBzs4OnTp1kjkmFovx5s0bhIWF4dWrVwgLC0NkZCSioqLw5s0bREVFITU1VVhGqqQYGRnB2NgY+vr60NPTg66urkzS1taGuro6NDQ0oK6uLqS3b9/iyJEjyMnJgUgkElJOTg7S0tKQlJSE5ORkYZuTk1Oi+7e3t4eLiwtcXFzg7OyMevXqoVGjRryFW4XhIsypFKirq8Pe3h729vZo3759keekpKQgKioKMTExiI+PR1xcHOLi4oTX8fHxMsKYkpIiJEWjpaUFMzMzVK9eXSZVq1YN1atXh7OzMxwdHaGjo6NwWziqBRdhTpXByMgI9erVQ716JVvTVSwWIzU1FcnJyUhPT0dmZiYyMjKQmZkppOzsbIjFYuTm5kIsFgspODgYdevWhaamZqFkaGgodHnkb7m4coqDizDns0VdXR0mJiYwMTEp9bXFrbLN4ZSWihmV4HA4HE6RcBHmcDgcJcJFmMPhcJQIF2EOh8NRIlyEORwOR4lwEeZwOBwlwkWYw+FwlAgXYQ6Hw1EiXIQ5HA5HiXAR5nA4HCXC8pe25gCMsXgAEaW8zALAOwWYw1FteL1/vpSl7msSkWVRB7gIlxPGmB8ReSrbDk7Fwuv980Xedc+7IzgcDkeJcBHmcDgcJcJFuPz8pWwDOEqB1/vni1zrnvcJczgcjhLhLWEOh8NRIlyESwlj7CBjLJExZvPBfnXG2H3GWAhjTFdZ9nE4HPnDGBvBGCPGmIu88+YiXHqmACAAf3yw/0cAHgC+I6LMCreKo3AK/BCLSk+UbR+ncsLXmCslRBTHGJsGYBdjrB8RHWaM1QawCMAWIrquXAs5FUA/AFEf7MtQhiGcyg8X4TJARLsZY4MAbGKMXQXwN4B4ALOUaxmngnhERC+VbQSnasBFuOyMA/AUwF0ATgB6EFGqck3icDiVDd4nXEaI6DWATZAK8DEiOqdkkzgcTiWEi3AZYYwZARgG6SBdU8aYoZJN4nA4lRAuwmVnFQBTAD0AWAFYrlxzOBxOZYSLcBlgjHkBGANgPhGdB/ArgAmMsVbKtIvD4VQ+uAiXkryJGFsB3AewPm/3SkgH6bYxxrSUZRuHw6l8cO+I0vMLgJoA+hCRBACISMQY+w7AbQA/AVioRPs4HI7i+IIxFvPBvmQiulzWDLkIlwLGmCeAaQCWEdHjgseI6B5jbD2AOYyxQ0T0VClGcjgcRbKxiH1PATQoa4Y8ihqHU0IYYyMA7ABQi0/W4MgLLsIcDoejRPjAHIfD4SgRLsIcDoejRLgIczgcjhLhIszhcDhKhIswh8PhKBEuwhwOh6NEuAhzlAZjbFDe0kDtPthvnbc/tohrJuUdK7NzfGWBMebGGFvEGDNTti0cxcFFmKNMfPK27T7Y3w7S5YKsGGOuRRxLgHSWUlXHDdIp8FyEqzBchDlKg4jeAAhF0SJ8pZhjbQHcID7LqEwwxrSVbQNHFi7CHGXjA6AlY6xgHJN2AHwB3EABEWaM1QJQDcB1xlhTxtgRxlgUYyyTMfaCMbYsL8pd/vmbGWOxH+QNxpg2Y+x9XqyP/H2WjLE/GWNvGGPZjLHnjLGxBY43zesG+erDG2CM/cEYi2eMaRbYN5YxFsAYy2KMvWOM/f1htwJjTIMxNpsx9izvvHjG2AXGmGuBKdIAEFJgVWeHvGuNGGObGGNv8+x9wRibxhhjBfL3yrumD2NsK2MsHkChLh6OcuEizFE2PgAMALgDAGPMBNJgKL55qW2Bc9sVuMYewCMA4wF8AWlY0VH4f+ECgD2QBtzv8kGZPQGYANidV6YRpILfHdJVs3sAOA3gf4yxKQBARPcBvAAwtGBGeaFLBwA4QESivH0rAGwG8C+ArwDMzLPxPGNMvcDlBwAsBXAOQG9IY1Q/g/SP5iykcaoB6erOLfNSNGNMLe/4SAC/A/gSwAUAa/Ly+5CNABikK8GMKOI4R5kQEU88KS0BcIR0iagf895/CWl/sBaA2nnHHPKO7QKQDED9gzwYpBEBhwKQADAvcCwYwP4Pzj8B4FmB9z8DyII0ME/B87YCeAdAI+/9TwAyARgXOKd3no3N8t47ABADWPBBXq3zzuud975D3vupH/lsRuSd4/LB/p55+0d8sH8bgGwAFnnvvfLOO67seuap+MRbwhylQkRhAKLw/63cdgDuElEOEQUDiPvg2E0iEuc9jq9kjIVCKjwiSFu+DECtAkXsAdArfw1Axpg5pC3ePQXO+QLSVbPD8roINPK6MC4CMAdQL++8vQC0IW2Z5jMMwAsiupf3vjOkT5j/fJDXXQCpBe6lC6QCubWUH1n+5yABsO+D/Xsh/fNq+cH+42Uog1NBcBHmqAI+ANrk9Wfm9wfncwNAO8aYHaStzHyPih2QdkVsgFT4mgKYlHdMp8D1e/Pef5P3fgCkrea9Bc6xyitX9EE6nHfcHACIKCKv/GGA0HXSA7KCbpW3fVlEfob5eeVtE4kos/iPpVjM8q7N+WB/TIHjBYkuQxmcCoIHdeeoAtcBDAbQAtK+4fkFjvkCmAigfd57H8aYDoBeABYRUcHBtYYfZkxEYYyxm5B2VezI214josgCpyVA2uL+vhj7XhR4vQfAVsZYTQBdIW15FhT0hLxtFwDvi8gr//g7AGaMMd0yCHFi3rVaHwixTYHjBeGeJCoMbwlzVIH81u0cSLsTbhc4dgPS7oX+kPYV34e0S0Ad0tZlQUYUk/9uAF55C7S2hGzLFZAOarkCeE1EfkWk1ALnHoa0+2MIpC1i37wWcj6XIe0qsC8mr7C88y7l3et3xdiMvHIAQPeD/dch/e32+2D/EAA5kP38OCoObwlzlA4RPWeMxUE6KOdPRGkFDj8EkJZ37CpJPRCSGWN3AMxgjEVD2qocBcC2mCIOQ+ohsBfSgbUjHxxfC2k3hS9jbC2kLV99SIW5LRH1KmBrCmPsJKRdH9Ug9WgoeC+hjLGVADYxxupAKphZAGpA2m2yjYiuEtFVxthRAGsYYzUg9YvWhLRb5CwRXYPUUwIAJjHGdkH6pxMI4Dykf05/MsYsIZ240h1SQV9ORO+K+Rw4qoiyRwZ54omIAKlQEoA1RRy7lHdsYYF9DpCKUSqkXQmbIO2fJQBeH8l/XzHlm0IqxmGQtibjIO0K+aGIc/PLkfGU+OCcYQDuAEiH9E8kKM9GuwLnaEDqcRGcV2Y8pO5qdQqcsxDAG0g9Lgp6ihjl5Redd20wpOsfsgLXeuVd00nZ9ctT8Ykvb8ThcDhKhPcJczgcjhLhIszhcDhKhIswh8PhKBEuwhwOh6NEuAhzOByOEuEizOFwOEqEizCHw+EoES7CHA6Ho0S4CHM4HI4S+T/r6/Gpf0wtlwAAAABJRU5ErkJggg==\n",
"text/plain": [
"